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The Interpretation of Quantum Theory:
Current Status and Future Directions

A Perimeter Institute lecture series and University of Waterloo special topics course.

Location: Perimeter Institute (room 405).
Organizers: Joseph Emerson and Ray Laflamme.
Lectures: Tuesdays and Thursdays from 2:15-3:45 from Jan. 4* 1o April 5%

Course Outline and List of Lecturers:

Lecture week 1 (Jan. 4. 6): The Structure of Quantum Theory.

A. Postulates of Quantum Theory.
B. Operationalism and Generalized Axioms of the Quantum Theory.
Lecturer: J. Emerson

Lecture weeks 2 and 3 (Jan. 11_13, 18, 20): Basic Problems of Interpretation.
A. Basics of Interpretation: Ontic vs Epistemic Classical Theories.
B. Orthodox and Copenhagen Interpretations (following von Neuman, Dirac, and
Bohr).
C. The Measurement Problem (Schrodinger’s cat) and the Projection Postulate
(collapse of the wavefunction).
D. The EPR Paradox (state realism vs non-locality, the possibility of incompleteness).
E. Constraints on Hidden Variables: Bell's Theorem (non-locality) and the Kochen-
Specker Theorem (contextuality).
Lecturer: J. Emerson

Lecture week 4 (Jan. 25. 27): Many Worlds Interpretation.

Lecturer D. Wallace

Lecture week 5 (Feb. 1. 3): The deBrogiie-Bohm Interpretation.
Lecturer: S. Goldstein

Lecture week 6 (Feb. 8. 10): The Statistical Interpretation.

Lecturer: L_E. Ballentine

Lecture week 7 (Feb. 15. 17): Spontaneous Collapse Models.
Lecturer: P. Pearle

University of Waterloo Reading Week (Feb 22, 24): No Lectures.

Lecture week 8 (March 1. 3): Experimental Interiude I: Interference of Macro
Molecules.

Lecturer- A Zeilinger
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Lectnre week 9 (March 8. 10): Consistent Histories.
Lecturer: R. Grffaths

Lecture week 10 (March 15, 17): Experimental Interlude II: Bell’s Theorem and
Noo-Locality.

Lecturer: A Aspect

Lecture week 11 (March 22. 24): Advanced Topics in deBroglie-Bohm Theory.
Lecturer: A Valentimi

Lecture Week 12 (March 29, 31): Epistemic Features of the Quantum State.
A. Chaos and Quantum Classical Correspondence in the Macroscopic Limit
Lecturer: J. Emerson
B. Quanmum Properties from Constraints on Classical Knowledge: A Toy Theory.
Lecturer- R Spekkens

Lecture Week 13 (April 5): Physical Axioms for Quantum Theory.
Lecturer: L. Handy

Evaluation:

307 Class Participation
30%% Assignments

40%: Term Project

Acknowledeements: Special thanks to the Perimeter Institute for Theoretical Phvsics
and the University of Waterioo physics department for sponsoring this lecture senes.
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Interpretation of Quantum Theory

Perimeter Institute for Theoretical Physics

U. Waterloo Course PHY490/PHY773, Winter 2005
Instructors: |. Emerson and K. Laflamme

Lecture 1 Jan 4, 2005 Lecturer: Joseph Emerson

Standard Postulates of Quantum Mechanics

Postulate L. A physical preparation (or state) is described by an op-
erator ; that is non-negative (and Hermitian) with unit trace. Rank-
one projectors, = |v) (v, called pure states, correspond to states of
maximal knowledge.

In many applications, it is adequate to specify the quantum state using
only vectors |v), where these vectors are elements of a Hilbert space.
A Hilbert space H is a linear vector space with an inner product de-
fined on it. (¢.¢) € C, or in Dirac notation, (v|e) € C. (We will
see later that for a vector space to qualify as an infinite dimensional
Hilbert space we must specify a further condition )

The dimension of H is the maximum number of linearly independent
vectors.

A linearly independent set of vectors spanning H is called a basis.

Any vector can be expressed as a linear combination of basis vectors,
e.g. let {¢,} beabasisof 7, |v) € H, then [v) =3, ¢,(9,)-
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Any vector can be expressed as a linear combination of basis vectors,
eg. let {o;} beabasis of H, [¢) € H, then [¢) = Y. ¢;|é).

BExample 1. A linearly independent set of column vectors form a basis fora
discrete Hilhert space.

Example 2. The space of differentiable functions can form a Hilbert space.

An mner product is defined by the properties:

1) (v.o)sC
ii) (o,v) = (v.¢)" (» denotes complex conjugation)
i) (@, oty —cts) =l ) + oo, v
iv) |[ellF =(¥,%¥) >=0
In Dirac’s notation (i) takes the form: (v|é) = C
An orthonormal basis {¢;} has
25.85) = (@4len) =0y (1)

where 4, , is the Kronecker delta-function.
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An orthonormal basis {9, } has
(6. 8:) = (¢i]&:) =0;; (2)

where &, is the Kronecker delta-function.

Example 3. For column vectors with elements,

the inner product is expressed as follows:
drld) = ? il:r;:

Note that bra vectors (e.g- (¢|) are elements of a dual space H', which
consists of linear functionals mapping elements of the Hilbert space to
complex scalars.

Exampled. Let ¢(x) and ¢(x) be complex functions, then the inner product
takes the form: (wle) = | dp(z)*()e{x)

An infinite dimensional H has to be complete in the norm - that is,
all vectors obtained from limits of Cauchy sequences are contained
#H. Given a Cauchy sequence {vn.}. ||[Vm) — [¥a)| — 0asm,n — =,

v) =lhm, . |¥n) & H,and ||[¥f]* < oo
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An infimite dimensional H has to be complete in the norm — that is,
all vectors obtained from limits of Cauchy sequences are contained in
H. Giverra Cauchy sequence {¢n}. |[tm) — [¥a)| —0asm.n — oc,

-

= i |¥n) € H, and [|¥]]" < oo

An important example of a continuous Hilbert space is L*(a, b), that
is, the set of square integrable complex functions, or

,‘ deju{z)|* < oo (3)

In practice it is convenient to make use of non-square integrable and
generalized functions which do not fit in the Hilbert space framewuork,
for example,

viz) = (z|p) = ; _:-_.’.- EXp L—F;—I\
and the Dirac "delta-function’:
il — =) = (x|=.).
defined by the conditions,
l- dodlr— ¢ o
),‘I‘."_;';:*: =)} = Jlx
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In practice it is convenient to make use of non-square integrable and
generalized functions which do not fit in the Hilbert space framework,
for example,

1 Pz
vir) = (Tip) = kﬁn—-_u'_JI..-.T-
and the Dirac ‘delta-function”:
defined by the conditions,
/- dzd{z —=x = ]
I--i:"':—:_"': = ‘-

To accommodate these elements we can use the rigged Hilbert space
formalism and treat the following inner products as well-defined:
r|x = dlr—=x (4)
PP = dlp—m (3)
A state operator § must be non-negative. An operator is non-negative
iff {u|plp) > 0 forall [u) € H.
Note that this guarantees that the state operator A is Hermitian (4 =
A"), where the adjoint operation will be defined later.
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A state operator § must be non-negative. An operator is non-negative
iff (plglp) > 0 forall ) e H

Note that this guarantees that the state operator A is Hermitian (A =
A'), where the adjoint operation will be defined later.
For a normalized state operator 5 (tr{5) = 1) there are three equivalent
definition of purity (maximal knowledge):

1) 7 = p, which means that p is projector.

) a(g’) =1L

3) p = |¥()v|. defining a projector onto a one-dimensional subspace

of H .

The trace of an operator A is defined by

tr{A) =Y (¢]Ale,

-
e

where {|¢,) } is any (convenient) normalized orthogonal basis.
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The trace of an operator A is defined by

=19 (&:]Al
tr(4) = ) _(é;lAle;

where {|¢,)} is any (convenient) normalized orthogonal basis.

Postulate IL. Each physical observable is represented by a Hermihan
operator O. Let O be a Hermitian operator with eigenvalues \; and
eigenvectors |.\).

a) The set of possible observable outcomes is determined from
{M)-

b) The probability of outcome J,, is given by Pr{.\,] = tr| A NlA)
when the physical configuration is described by p.

Eigenvectors and eigenvalues are defined by the condition: o) =
MlN)-

Postulate 2 a) is responsible for the novel structural aspects of quan-
tum theory. Operators with discrete spectra are "quantized” (in the
sense that they are discretized). Examples of this are the atomic energy
levels, angular momentum, and electromagnetic radiation can only
exchange discrete amounts of energy with some systems (ie. "pho-
tons™).

Postulate 2 b) provides the statistical /probabilistic/ indeterministic char-
acter of quantum predictions. It is known as the Born rule.
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