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Quantum Mechanical Entropy
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Causal structures are classical

» The light cone is a classical concept.

» Quantum mechanically there is at most a fuzzy
generalisation

» Why should the classical boundary conditions (be
it apparent, isolated event horizon) be imposed on
the quantum mechanical wavefunction?

» In particular Hawking radiation suggests a
tunneling even at the semiclassical approximation,

Which defies the classical one way causal flow.




-+ (lassical horizons

» Entropy should be measured for classical horizons

» The loss of information is as observed by a
classical observer, for whom the space-time
beyond the horizon is totally disconnected.
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-#%... Semiclassical States

» Coherent states, in which the expectation

values of the operators are closest to their
classical values.

» Coherent states in mon-perturGative gravity
framework, as horizons and causal
structures emerge in that limit.



= Coherent states

» In quantum mechanics coherent states are in the Hilbert
space with minimum uncertainty

» When the Hilbert space is restricted to these states
classical dynamics is recovered!

» A quantum mechanical action principle

Schrodinger’s Equation

Cahierent states

Classical
Equation




oherent states in gravity

» Defined for Canonical Sen-Ashtekar-Barbero-
Immirzi variables using the Hall transform

» The classical limit of these variables are also

defined on graphs, with edges and dual 2 -
dimensional surfaces.
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The guantum gravity action principle

» The quantum gravity action principle does
not exist.

» The Wheeler Dewitt equation, is derived
from the classical action principle and as
such does not qualify as a ab-initio
Schrodinger equation.

» Further the coherent states derived for
canonical gravity are kinematical.




-y kinematic action principle

Retaining only the Kinetic term

Restricting now to the Coherent state sector, does one obtain a
classical action principle? This equation will be true for all SU(2)

coherent states,
And for one copy of SU(2) for gravity, i.e. the coherent state for

one edge.



. gﬂematic action principle..

» Normalised wavefunction

Precisely the kinetic term for the classical action

Although not obvious, this confirms the fact that the coherent
states contain informatiom about the classical symplectic
structure, and the quantum action principle should be
applicable to all kinematic states in LQG, and perhaps, there
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&erent State structure....

> The state thus can describe any classical
space-time, except that the SU(2) valued/ﬁ/

classical label will be different. e J

Also, due to the structure of the f%}‘f*
wavefunction, it is unclear the classical |
labels g are continuous across the edges.

Hence this classical continuity needs to be
imposed as an extra condition.
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: "'fie c&wowaé pfwwe opcweaﬁa,

> A graph
» A dual graph
» Corresponding holonomy and momentum

» For spherically symmetric space-times, the time
slices are chosen such that the intrinsic metric is
flat. Thus, for any generic space-time, the graph
has to be on a manifold with




—asochwarzschild Black Hole

» The extrinsic curvature will isolate
specific metrics. For the Schwarzschild

black hole, the time slices are from the
metric




The momentum
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The momentum
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The holonomy
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The gauge invariant momentum and
area




The Coherent state and Area

#%..  operator




= The Area Spectrum

- The area spectrum for j>> 1 equals =(j+1/2)t
> Of caunse, in this limit, the axea specbuum is almost
continuows, and equalbs j t.

» However, irrespective of the magnitude of P, the
coherent state is peaked at P=(j+1/2)t, and

hence the classical area SEEMS tO De the expectation
value of a corrected self adjoint operator

M the it £ >0




The curvature operator

» The Riemann curvature tensor square

iverges at the center of the black hole, for flat spatial slicing
IS iS given by

ow, the extrinsic curvature is a function of the gauge
pnnection, and the inverse triads. One option would be to
easure the expectation value of the holonomy, and then
aluate the classical curvature, using the regularised
Ariables.




The classical singularity

» The €lassical singularity is regularised in the

holonomy, however, taking the edge length to 0, it
reappears.

Obviously, if one measures holonomy and writes the
Gauge connection as derived from there, and similarly for
the inverse triad, one obtains:

Diverges as r — 0




The regularised operator
_mg_,for extrinsic curvature

> Only operators measured are h, P.

A certain regularisation of the extrinsic curvature
operator gives the extrinsic curvature, with some extra
terms which—0 at the singularity is the following

In terms of this, the curvature ofperator can be e,wpﬁ'cf@ written also using a faoint
\S’p/}ffi}aﬁ method due to Thiermmann as



G”Towa rds Resolution...

» Observation, classically space is spherically
Symmetric, and-hence:
>

Rounded . ofaemfor as

A mamifestation of the minimum uncertainty
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I e Lpparent Forizon

> If the Spherically symmetric spatial slice
has a horizon, then the metric variables

are restricted by the apparent horizon
equation there (o global information to detect the

event horizon or isolated horizons)

In the jpﬁen'ca@ {ymmefnh metric, the horizon  will have a beat‘z’af normal
(1.0,0]

Since the intrinsic metric is égy onal, The LHS is fn‘wk;@
0 at eve Po;’nf n
r[mﬁa[ cling




—a%... Horizon graph

» The apparent horizon equation imposes no extra
condition on the radial edges crossing the horizon.

The graph at the horizon comprises solely of edges
peaked at radial edges crossing the classical horizon
surfaces, which also induce it with area.

I the final constraint, the undetermined constant a cancels !




,_.@.e Schwarzschild observer

» [f an observer static at infinity decides to
slice the space-time, using the same flat
slices, then there are no changes in the
expressions for the holonomy or the
momentum, except that the observer’s time
s infinite at the apparent horizon.

» This implies that the coherent state after
the apparent horizon ceases to exist.



—a=.. The Correlations

» The apparent horizon equation gives a
difference equation for the angular edges

at the vertices immediately outside the
horizon and those immediately inside.

These are dassical covelations, and need to
be added to the coherent state structure.
The gauge invariant coherent states will have
additional Clebsch-Gordon coefficients.




... Density Matrix

» Since, there are no correlations in the radial
directions, the density matrix reduces to:

The matrix elements of the a(enﬂ'@r matrix are evaluated in a orthonormal
basis

Since,

With appropriate norma lisations



_a=Reduced Density Matrix

The infernal divection trace here mfum@ gives the delta function peak:, and
The sum cof@;pses to fﬁgj&f




-+ The Matrix elements

Typ}bﬁ[ matrix elements are of the form

For é@e value of p which is a semiclassical limit for the horizon, the off ﬁyana{ terms
Go to zero due fo a factor of from the normalisation

The ﬁ@onaf elements in the limit { ->0 are delta funchion peat@sa( at parﬁbué:r
9(cl), and hence, one obtains:

Un@ at the horizon, the &@enemry in m and n contribute, as the states are ﬁ-ee,
Zind an@ oliservable is the induced area at the horizon, fhus




The Entropy

Bekenstein Waw&mﬁ Enfropy, with Jrmirzi [mmmet‘er améyu@




Conclusions

. B nsfein-Hawking entropy obtained for
the classical Horizon using semiclassical
states

» Singularity appears to be excluded

» Hawking radiation?

» Unitary Evolution?
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