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Abstract: Are you ready for this upgrade? The very foundation of computer science is changing. As Moore\'s Law draws to a close, rules of quantum
physics are taking over. Learn how leading researchers are using counterintuitive effects, such as superposition, in their quest to build ultra-powerful
guantum computers. You\'ll see how quantum particles behave, are controlled and, ultimately, used to calculate. <kw>quantum world, Raymond
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e Why quantum information?

e What is quantum computing?

e Steps towards building these devices.
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We are advancing towards -
the quantum scale!
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SCIENCE'S COMPASS

PERSPECTIVES: DEVICE PHYSICS

Pushing the Limits

Paul A. Packan These t'u!:da_memu] ISSUes hg.ve not pre-
- e vipusly limited the scaling of transistors
e T hecmcnn = sl and represent a considerable challenge for
- |u{_1us.n:}' .. ?G“mﬂi_.}fmme S IS COV he semiconducior industry. There are cur-
law, winch iy that tr:IIl:'-_-LSLt‘!l' per-  neighi rently no known solutions to these prob-
g — -.ll:lul:rlr:_eme-:"g"1 years  M0m ' 1..ne To continue the performance trends
L e AT “.“?Td‘“‘f“ FhE M of the past 20 vears and mamtain Moore's
Moore's statement has yet to be violated.  ng ar  Fror improvement will be the most difti-
But now it seems [0 be in seTious |:’_l:1ng:'r. with ¢ 4 challenee the scmiconductor Industry
Fundamental thermodynamic limits are  accept ———"—rry
bemg reached in critical areas, and unless  conat ———————
i new, impnovative solufions are found, the ira ek —
current rate of improvement cannot be freecl 1. G Moons [EDM Tech. Dig: (1975), p. 71

Y " Fe F F S

10T SChunl ARGl el AL gk, EEE) Sulid-Blaty Circuits SC-8,

e
e
'

ity
iR

=

:
. ~
o B2 =
1
i
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around 2020 they will be of atomie size.

l NS SeNTETd WaT e
Intel scientists find wall for Moore's Law

Bra i =
Exalf Wiber, CHET Maws. ooer
=] | = |

Mocre's Law, 35 chip manufaciurers generally refer to it today.
s coming to an end, according to a recenl reseanth paper.

Grambed, that end likely won'? come for about beg decades, but inle
reSEErChErs Naee reconily cuslishas @ caper theoraing that
chipmakers will hit & wall wien @ comes io Shrinking the siee of
trensistors, ong of the chagf methods for making chips that are
emalies, mote powarful and cheaper than thair presscESLore

Marufacturers will be 3bie o produce chips on the 16-nanomsaiar
TFanufacIuring CTOCEEE . enperad DY CORSENVEIIVE EImaEes 10 3mva
in 2018 and maybe one or two manufacionng processes after that
bt that's &

mantaimned.
The dominznt slectronic device used to-
Pirsa: 04120002 day in integrated circuits is the silicon-

The author is at Intel Corporation, 5200 ME Elam
Parkway, Hillsboro, OR 97124, USA. E-mail: paula.
packan@intel.com

centration of these donor and accept
atoms 10 maintain a constant total charg

Page 8/152



We arq :=- |
/. a

Moore's Law

1 20010 1M AM 1 transistors
per-chip

the qud =3 ", ey
I?}q,ﬁ_} I : | '
g | 1<, g | I | 2o N
g I [ .-:E_'u: I I | :—.l - I ? -~
= =
1 T 10 _;‘.'-"j '__'fl? I § _-l I ,[?__' I - '."L- rapidly,
E § I § (:r;-al I ':% I atomie size.
PERSPECT S ~ = =
g F 18 I TWE
S0 1T = & | | = ot | e
= = = & = = 3
- = -l =z
1-mm Fi Fi : :; f : If % ? find wall for Moore's Law
14 o 20 2B
1 1950 15!6{] 1970 1&{! 1&3(] 2000 2010 2 L

or the
Fmr md
law, wh

ormance
(I -k'IT‘-'u‘nl__
Moors"s statb
But mow it s
Fundamenta

manufacturers generaily refer o if today.
pecording to a recent reseanch paper.

The size of transistors is decreasing rapidly.

Iy cwdlishas & paper thaonging that

around 2020 they will be of atomic size. e s T g s o

nd cheapss than thair prensecesLore

TS O Reie 10 produce chips on the 15-nanomatar
RANUFECILNNG DTOCEES. expamed DV CORSENEIIVE aEIIMENEs 10 Jmva

bemg reached 1n cnuical arcas, and unless

new, mnovative solofions are found, the

i current rate of improvement cannot be
mamtamed.

The domnant zlectronic device used to-

Pirsa: 0412p002 day in integrated circuits is the silicon-

cone -——

tra ek Rafersnces :: 3:;;:;u maybe ane or two manufactunng processes sfer that

free cl 1 G. Moers, [EDM Tech. Dig. (1975), p. 1 o .

tor sChwad ALl 2at B5S Ailis-ginte Cirenits SC-G, . _ 1

centration of these donor and accept: z::k:a::oHril;;b:‘r::ﬂE:! IEJﬁE?T%T#_E;I-—f;i::Ep;TE

atoms 1o maintain a constant total chars o on@intel.com Page 9/152



Page 10/152

Pirsa: 04120002



Moore's Law
We B 1 2000 1M AM  12M  trapsistors
e per-chip
2 L ey | I I | |
the quq = s
'r_i"g_-x._l_ I I I I
1%, | | | |
Y
5 ! 1<, | | |
=2 | . = | I |
L Ty = 4 | § ol | "?L-?I
FE 1 FaNLE
PERSPECT = — — =
g §| | f § | I ﬂa_a S
omel  F 81 13 21 1% §
e, = = £ S ?
1-nm _
0 = ; = B
1 1950 ﬂw 1970 190 1450 2000 2010 25;;

or the
Fmr md

law, wh
formance

(I -k'IT‘-'u‘nt__
Moors"s stat

The size of transistors is decreasing rapidly.
around 2020 they will be of atomic size.

easing Tapidly,

Avomic siZe.

find wall for Moore's Law

1 = =

manufacturers generally refer to it teday.
pecording to a recent reseanch paper.

wion] come for about bag decades, Dul Indes
ly cuslisher & paper theorzing thar

when il comes o Shrinking the Size of
hagf mgthods for making chips that are

rd chEaper 1ran thail presscesLors

TSI T U Roie 10 produce chips on the 15-nanomatar

But mow it s

Fundamenta

bemng reached 1n cnnical arcas, and unléss™  con af

new, mnovative solutions are found, the tra ek
free cl

current rate of improvement cannoi be

mantained.

The domnant electronic device used to-
Pirsa: 0412p002 day in integrated circuits is the silicon-

atoms o maint

Raferences

1. G. Moers, [EDM Tech. Dig. [1975), p. 11

Vo

centration of these donor and accept:
ain a constant total charg

10T SChsnsd, Sl Fed s gk BEE ) Aolis:iaty Cuowts SC9,

TFanufacIuring CTOCEEE. enperad DY CORSENVETIVE EImaEes 10 3mva
in 2018 and maybe one or two manufacionng processes after that

bt that's i

The author is at Intel Corporation, 5200 ME Elam

Parkway, Hillsboro, OR 97124, USA. E-mail: paula.
packan@intel.com

Page 11/152



Quantum mechanics was discovered 100 years ago:

- for more than the first half a century we struggled
to understand its implications at describing the world
around us: quantum mechanics is seen as an obstacle

- there has been technology using some feature of quan-
tum mechanics: the transistor, the laser, MRI

- Moore’s law suggests that we need to control quantum

systems

~around 1980 thmgs have started to change...
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We are advancing towards -

the quantum scale!
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Basics of Quantum Mechanicg

A coherent light source such as a laser is shined through 2 slits,
the result of each independent slit do not add up to the final result
when both slits are open due to interference effects.
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Two properties of Quantum Mechanics:

Quantum systems behave both as waves
and particles. These particles can be at more
than one place at once.

Looking at quantum systems always leaves
a fingerprint.
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Farly computing devices
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‘Mathematical Problems
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Turing machines

Infinite Tape L B
B <« —>
? tk J[h;-i-1 tk+2 P
Read-Write Head

Church

"We can only see Turing machine

a short distance ahead,
but we can see plenty there
that needs to be done."
Alan Turing
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Complexity theory

Goal: asses the amount of ressources to solve problems
>Adding:  748230+3802=752032

Scale is number of digit of input

> Factor in product of primes: 54020-97x557
Scale is number of digit of input

> Travelling salesperson:

Find the shortest route from Start to End

Scale is number of cities Sta rt E nd

n @& Hard problems:
nz exponential amount of ressources

@& Easy problems:
polynomial amount of ressources

Scale

2

#Ressources
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Quantum Factoring

(Shor, IEEE Press 1994)

n=pq (L=Inn)
Peter Shor
Today the fastest claissu.:a] com}:}lfters pridatn”
can factor number with ~150 digits explA(L1/31n2/3L)]
Quantum algorithm g
é —_
# of gates ~12L3 g
: . ==
# of qubits ~5L s i
=
— |

0 200 400 600 =00 1000

RSA Data Security number of bits L
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Quantum Factoring

(Shor, IEEE Press 1994)

n=pq (L=Inn)
Peter Shor
Today the fastest classical computers Sliora
can factor number with ~150 digits expA(L1/31n2/3L)]

oo
Quantum algorithm = e
. g ¥
# of gates ~12L3 Ly
E ) =
# of qubits ~5L s i .
C 6
P 1

0 200 400 600 =00 1000

RSA Data Security number of bits L
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Be Universiy of
w Waterloo
con i

Cryptographic
Research

Colossus,the first electronic computer,

N —

was used to break FISH Smase = -~

Distinguished Professor Emeritus at UW
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A classical computer in a nutshell

Classical bits of information are encoded in
physical systems which has two states O and 1

...110 ...001
01000 = o 01100
11101 = 00101
000... 010...

Transformations are made with (universal) gates

Not Gate 1=—>(0 or 0=—>1
And Gate

8 8 = = Ouput
|
1.1 Input 1 And Input 2
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A quantum computer in a nutshell

Quantum bits (qubits) are quantum
systems with two levels

+0. 3(@ 0) :
’ 095 +0.3 2,

Universal set of operations (gates)
-generic one bit gates
-any interaction between qubits

—0 95 =1
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The power of Quantum Computers

# of quantum quantum states # of classical
bits bits

=9 21-2

A%

A quantum bit
can be in two states
at the same time

We need two paramters to decribe the state
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The power of Quantum Computers

# of quantum quantum states # of classical
bits bits
=9 0.1 21=2
2 €6 00,01,10,11 22_4

FEE 4

Two quantum bit
can be in four states
at the same time

We need four paramters to decribe the state
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The power of Quantum Computers

# of quantum quantum states # of classical
bits bits
L =§ = 21=2
2 €6 00,01,10,11 22_4

3 ¢¢¢ 000,001,...,111 23_8
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The power of Quantum Computers
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# of quantum

bits
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4 g¢8¢
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40 ¢ -
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LSS SRR ST ST e

quantum states
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0000000000...,
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0000000000...,

# of classical

bits
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The power of Quantum Computers
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# of quantum

bits
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quantum states
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Theory vs experiment
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Nuclear Magnetic Resonance

[115S50 -
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Nuclear Magnetic Resonance
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Quantum circuit

Control-Not
X Target
Z:-90
A 01 :01 2 qubit-gate
= 10 =11 » Y90 « » Y:-90| | X:90
-—
11 —10
fime >
7 9
Pre-compiler (Optimizer) Bruker (machine) language
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pulse C2 90

>

o
zz 25 CT 2
zpmiise U= 75 CF:
pulse C2 90 .75
pulse C2 90 .0
refocus C1C2 180

8u
8u
(C2 90:sp9 phl9) :f1
6u ippls ipplS

8u
(C2 90:5p9 ph20)
, 6u 1ppls ipp20

(C2 90:sp9 phl3 )
u
3u ippl3

0.71365m

-1

=T

Cl
Cl
Cl
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Quantum circuit

Control-Not
Y Target
Z:-90
@ 01 — 01 C 2 qubit-gate
- 10 =11 » H Y90 |« »Y:-90| | X:90 o) 13
3

ZZ

Pirsa: 04120002

uage

pulse C2 90

A CE €4

—

; zpulse CI-_75;C2:
; pulse C2 90
; pulse C2 90
refocus C1C2 180

.75
.0

'S S0 p

(CZ 90:5p9 phl9):
6u ippls ippl9
8u

(C2 90:sp9% ph20) :
, 6u 1pplLs ipp20

Cl
Cl
Cl
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Control-Not Quantum circuit
Y Target
Z:-90
-._ 01 — 01 C 2 qubit-gate
Yo =11 > g | Y90 » Y--90| | x:90
- GRS
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ZZ

pulse C2 90

I OCE €4

; zpulse C1:.75;C2:
; pulse C2 90
pulse C2 90
refocus C1C2 180Q

-

oy ..
.0

I3 S0 g

8u
8u

(C2 90:sp9 phl9) :

6u ipplbk ipp
Su
C2 90

| A

. 90:sp9 ph20) :
, 6u 1ppl5 ipp

20

FAALY,
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Control-Not Quantum circuit

Y Target
F—@ Z:-90 1l
'.' 01 — 01 C 2 qubit-gate é}g &
- s Y90 |« »Y:-90| | X:90
s J10 =11 l B e i
h11 _>10 Cl
Pre-compt! uage

—

pulse C2 90
o Lo ol U
zpmlise CI - _75;CX:
pulse C2 90 .75
pulse C2 90 .0
refocus C1C2 180Q

(C2 90:sp% phl9) :f1
6u ippls ippl9
8u

(C2 90:5p9 ph20) :
, 6u 1ppls ipp20
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Quantum circuit

Control-Not
Y Target
Z:-90 Cl
"Fﬁ C 2 qubit-gate $_Lg 1
= _ Y:90 Y:-90| | X:90
= R e Y a

—

pulse C2 90
= 2% CT I
zpnisae= U= 75 CF:
pulse C2 90 .75
pulse C2 90 .0
refocus C1C2 180

(C2 90:sp9 phl9) :f1
6u ippls ippl9
8u

(C2 90:sp9 ph20) :
, 6u 1ppls ipp20
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Quantum circuit

Control-Not
\ Target
Z:-90 C1
'Fﬁ C 2 qubit-gate $_Lg Cl
I _ Ty Y-90 Y--90| | X:90
e 1O =11 . H h " H' Cl
e
Pre-compil uage

-~ pulse C2 90 .2 T
_ s E=x 2% CEF 3 _

> zpmise CY-_T5:CF:
; pulse C2 90 .75
s puli=s=CZ 98 .0
refocus C1C2 180

(C2 90:sp9 phl9) :f1
6u ippls ippl?9
8u

(C2 90:sp9 ph20) :
, 6u 1ppl5 ipp20
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Control-Not
5\ Target
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Quantum circuit

: 1 —01
= (1]0_.}?1 > | V90

Z:-90 Cl

2 qubit-gate 1
Y:-90( | X:90

" H:“"g ' cl

uage

1

——Z2./; pulse C2 50

_ > = 2% CE ¢
> gl CT-_T5:CF:
; pulse C2 90

—i

P ; pulse C2 90 .
: refocus C1C2 180

o

0

=]

(C2 90:sp9% phl9) :f1
6u ippls ipplS
8u

(C2 90:sp9%9 ph20) :
, 6u 1ppls ipp20
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Quantum circuit

Control-Not
Y Target
Z:-90 Cl
2 — C 2 qubit-gate $_Lg Cl
= _ Y90 Y--90| | X:90
R B e il P

uage

1

->/ pulse C2 90
: zz .25 CL C2

pulse C2 90
pulse C2 90

Pirsa: 04120002

-

zpnlise Cl - _75;CX:

.75
.0

refocus C1C2 180

, 6u 1ppl5 ipp

=T

:sp9 phl9)
15 ippl9

C2 90:sp9 ph20) :
0]
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k- Target
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Quantum circuit

Z:-90 (B4
2 qubit-gate é_‘g 1
Y:-80| | X:90
> g o1

——2./; pulse C2 50

zz B R ¢
;> zpmise CY-_JT5:;C2:

‘ ; pulse C2 90 .75

" ; pulse C2 90 .

i refocus C1C2 180

- —

0

'S _S0apd p

(CZ 90:5p9 phl19) -1
6u ippls ippl9
8u

C2 90:sp9 ph20) :

20

\ 6U ippl5 ipp20
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Quantum circuit

cl

Z:-90

Y90

2 qubit-gate

<

>

Y:-90| [ X:90

uage

pulse C2 90
W .
; Zzpulse Cl1:.75;C2:
; pulse C2 90
; pulse C2 90
refocus C1C2 180

— 2

. L
.0

u
3u ippl3

0.71365m

6u ippls ippl9
8u

(C2 90:5p9 ph20) :
, 6u 1ppls ipp20

(C2 90:sp9 phl9):f1

Cl
Cl
Cl

Page 141/152



Quantum circuit

Control-Not
5 Target
Z:-90 Cl
_,_ - C 2 qubit-gate é_g Cl
Y10 =11 Ty H Y90 |« »Y:-90| | X:90 s 1

uage

pulse C2 90
ZZ

pulse C2 90
pulse C2 90

Pirsa: 04120002

refocus C1C2 180

—

25 CI 2
zpulse CI-_75;C2X:

a5
.0

'S S0 p

(C2 90:sp9 phl9):f1

6u ippls ippl9

Su
(C2 90:s5p9 ph20):
, 6u 1ppls ipp20
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Fle Acquire Process Analysis Output Display Windows
Natacet+ ¢ chloroform 10 1 C+ | aflamme >

Title: pseudopure state carbon 1

with the Carbon, the control,
in the state 0.

-
-
B
Hz/ppm
phase

calibrate

integrate
=
ufilities s grtget

L] (el

2D 3D

sw—sfol
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Fle Acquire Process Analysis Ouiput Display Windows
Natacet+ ¢ chloroform 11 1 C+ | aflanme >

Title: pseudopure state plus 1/2) delay carbon #*

with the Carbon, the control,
in the state 0.

Control-Not Quantum: circuit

2D 3D

sw—sfol
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FAle Acquire Process Analysis Ouiput Display Windows
Natacet+ ¢ chloroform 12 1 C+ | aflamme >

Title: pseudopure state carbon .J.

in the state 0,

T I LM S, o L SR ML S o L AL P

with the Carbon, the control,
in the state 1.

Control-Not
Target
.:'L _.4""'-_._ 8
<= (LI [
Jo1
1o

Y YU [ Le+lh
Re I Fid

Sh Ush

2D 3D

sw-sfol
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FHle Acquire Process Analysis Ouiput Display Windows
Natacet+ ¢ chloroaform 13 1 C+ | aflamme >

Title: pseudcpure state plus 1/2) delay carbon |,

with the Carbon, the control,
in the state 1.

Control-Not

larget

4 e 1
- [ — I_:II__' -----
Jo1 — o1}
-,I | |:I =11 :
I —70|

——

2D
_d

sw—sTol
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FAle Acquire Process Analysis Ouiput Display Windows
Natacset+ ¢ chloroform 13 1 C+ | aflamme >

Title: pseudcpure state plus 1/2) delay carbon |,

i 1]
[ 2]
exp
-
-
:::3
Hz/ppm
phase

calibrate

—— with the Carbon, the control,
e in the state 1.

Control-Not

larget

2D
[ &

sw—sfol

E Pirsa: 04120002 Page 147/152




Quantum Error Correction

Noiseless Subsystem
No Encoding, Y Noise

| Encoded, Y & Z Noise

pres w0 ms |I[|' II' 3I'[|'
Amount of noise ~ time ' Noise Strength (HZ)

T I'| f|I|'||1|| r||1|1l|| |' | 1 Simulation of Quantum systems
: T A Al T :

5 —

) =]
Ln

Red i)
(=]
|
5 I Ca{Typ 5
(=]

L

Quantum Chaos o 1 z

Red (R}
|
I T i ¥y -
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Controlling forces of nature:
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e Many of today’s technologies
are going towards the quantum scale.

e Quantum information take this
decrease as an advantage instead
of at@%ﬂ'&ediment, it allows to
tackle ta*s impossible for its

: 2
classical counterpart.

e Quantum information is the most developed of the potential
nes will also be created.

e The Institute for Quantum Cg nput ng at the University of Wa-

3 X P
terloo and Perimeter Institute are

incredible opportunity.
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