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Cellular Biology and Theoretical Physics

Do the tools, methods (and people)
of theoretical physics have anything
useful to contribute to modern
cellular biology? Or did Delbruck and
Szilard have all the fun?

Curtis Callan (Princeton)
with lots of help from W. Bialek

Perimeter Institute, 12/1/2G04



Abstract

Each cell in our body contains the same genetic information, coded in a single DNA

molecule. Via gene regulation, each cell controls which proteins are made and what the
cell actually “does'. The core mechanism of regulation is that the expression of genes
is influenced by the binding of protein molecules (transcription factors) to particular
short segments of DNA sequence lying near the sequences which code for protein.
Despite nearly fifty years of rapid progress in unraveling this mechanism, deep
physical questions, regarding specificity, kinetics and noise, remain imperfectly
understood. Although these questions emerged from the study of a particular

biological system, they apply broadly across biology.

From our point of view as physicists, these are questions about the way in which
biological function is constrained by physical principles and are fair game for study by
heoretical physics (and physicists). These questions have not been resolved by the
relentless advance of molecular biology over the last fifty years. However, the recent
explosion of quantitative data, due to genome sequencing, expression profiling, etc.
have placed these questions in a new confext--one which presents an opportunity to
address central theoretical problems of biclogy from a physicist's point of view.

T will discuss some aspects of this vast and fascinating topic as seen from my own
limited experience in dabbling in biclogy.




Some reasons why the question is timely

Biology as it is practiced foday looks more and more like physics: quantitative
experiments, large volumes of data, sophisticated data analysis, models, ...

Physics teaches us that models and data analysis must be guided by formal theory:
Qualitatively striking phenomena demand new mathematical structures

Physics is not just a methodological model: Cells often operate in a regime where
physical constraints are important - limits to specificity, precision, noise, ....

he genomic revolution (organism sequencing, expression profiling, ...) has brought
these issues into sharper focus ... we need much more than "bio-informatics” to
extract meaning from the mass of data being produced.

heoretical physics provides a reservoir of people and ideas which are well-suited to
take up the challenges of the new biology (that's our opinion anyway).

o make this more concrete, I will describe a few cases where sophisticated
theoretical approaches are being used to address real problems in cellular biology.




Neuroscience as "existence proof” that theoretical

physics has something to say about biology:

theoretical physics ideas

new fields of experiment

coding of sensory signals in neural spike
trains should be an efficient - perhaps
optimal - code ... must be matched to the
distribution of inputs

(Bialek et al)

information in spike timing;
neural code adapts to input statistics:
info adaptation is as fast as possible

(de Ruyter, Meister, Berry, et al)

electrical dynamics of neurons determined by
ion channels, but overly sensitive to numbers
of different channel types ... "self tuning”
mechanisms needed for robustness

(Abbott et al)

neurons do "remodel" their channel
numbers; novel homeostatic requlation
mechanisms observed

(Marder, Turrigiano, et al)

compufing with attractors ... network

dynamics for memory, recall, optimization, ...
(Hopfield, Seung, et al)

stabilization of eye position as the

prototypical short-term memory
(Tank et al)




Illustrative examples from current work
on problems in cell biology:

Optimization principles for identifying
transcription factor targets

Evolutionary comparisons as a tool for
learning about transcription factor binding

Noise, small numbers and stochastic aspects
of gene expression dynamics

Coordinate-independent approaches to finding
groups of co-requlated genes



Cartoon Overview of Gene Expression
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Bacterial chromosome (5 x 10° bp)

Genes are transcribed by a protein complex (RNAP) and ultimately
translated into protein by the ribosome (triplets of bases are read

as one out of twenty amino acids via the "genetic code”). Special
transcription factor proteins (TFs) control RNAP binding to promoters.
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Transcription Factors: Proteins
that Regulate Gene Expression

Basic Mechanism: TFs bind to short (noncoding?) DNA sequences to
modify expression level of nearby genes. Complex circuits are made.

Coding Problem: Same TF binds to many different sequences. No
analog of 3bp codons. Sites are statistically defined at best.

PWM Method: One-point correlation model of site statistics/binding
energy (Berg+vonHippel). Useful reduced-dimension approach.

Significance: To analyze GRNs at next level of complexity, need quant-
itative model for how TF finds its DNA. PWM is the only game in townl!

Issues: Basic stat mech of TF binding; going from sequence to energy
by optimization; problems/solutions; constraining parameters



Masses of Genomic Information are Available

256 336 ++
50215233 ++
99315682 +-
6460 6528 --
7960 8237 -+
91929305 ++
9894 9927 +-
10495 10642 --
11316 11381 +-
11787 12162 -+
14080 14167 ++
15299 15444 ++
16178 16730 - -
16961 17488 -+
18656 18714 ++
19621 19810 +-
20509 20814 --
21079 21180 -+
21400 21406 ++
22349 22390 ++
25702 25825 ++

thrl thrA
thrC b0005
b0005 yaaA
yaaA yaal
yaad talB
falB mog
mog yaaH
yaaH b0011
htgA yaal
yaal dnak
dnaK dnaJ
dnad yi81_1
yi82 1 gef
gef nhaA
nhaA nhaR
nhaR insB_1
insA_1rpsT
rpsT b0024
b0024 ribF
ribF ileS
ISpA slIpA

Some 180 bacterial genomes are
completely sequenced. The genome
and lots of other information is avail-
able from www ncbi.nih.gov

E. coli has 3400 genes. Online
protein tables tell you the gene
coordinates, name and function.
Most common annotation: unknown

Non-coding regions can be derived
from these tables. Cover relatively
little real estate, but most TF binding
sites lie there (for obvious reasons).

Genomic data is highly non-random:
intelligent statistical analysis needed
to unravel gene expression network



Gene Regulation by LacI and Crp (or CAP)
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Transcription Factor Binding Site Statistics

Sequences of some of the 48 Crp sites (19bp)
| Flanking Genes

Location | "Energy’ Sequence

70158
431345
431384
702991
791335

1019443
1236673

2229786

2350502
2350552

| 6.187863

6.356798
0.872654
6.714032
6.900346
7.764454
5.007025
6.836420
4217979
4463704

11.720174 | AAACGTGATTTCATGCGTCATT

| AAGTGTGACATGGAATAAATTA

| AGATGTGAGCCAGCTCACCATA

| AAGTGTGACGCCGTGCAAATAA |

|
AACTGTGAAACGAAACATATTT |
GTGTGTAAACGTGAACGCAATC |
TTTTGTGAGTTTTIGTCACCAAA

ATGCCTGACGGAGTTCACACTT
ATTTGCGATGCGTCGCGCATTT

TAATGAGATTCAGATCACATAT
ATGTGTGCGGCAATTCACATTT

araB araC
tsx vajl
tsx vajl

nacB nacE
galE modF
1_r]_l_lp:'§._ HI_IJ_JL
veeB dadA
vohK cdd
:'i.'l}]_'ll\.- cdd
elpT elpA
olpT elpA

Sequences of the three Lacl sites (21bp)

Det

Aera

Left and Right Operator Sites in ¢,

Sequence(s)

I_.lJl'HTiI i

‘Enerev’

Sequence

0.4810

0.0210

GTATCACCGCCAGTGGTAT

365546
365546

(.s09
0.799

AATTGTGAGCGGATAACAATT
AATTGTTATCCGCTCACAATT

ATACCACTGGCGTCGATAC

0.0910

0.0470

TCAACACCGCCAGAGATAA

365145
365145

1.063
1.053

AAATGTGAGCGAGTAACAACC
GGTTGTTACTCGCTCACATTT

TTATCTCTGGCGGTGTTGA

0.0670

0.1160

TTATCACCGCAGATGGTTA

TAACCATCTGCGGTGATAA

365633

365038

6.449
6G.439

GGCAGTGAGCGCAACGCAATT
AATTGCGTTGCGCTCACTGCC

0.0025

0.6850

CTATCACCGCAAGGGATAA

TTATCCCTTGCGGTGATAG

0.0125

0.0150

CTAACACCGTGCGTGTTGA

TCAACACGCACGGTGTTAG

0.3460

0.1160

TTACCTCIGGCGG IGATAZ

| TTATCACCGCCAGAGGTAA



Matrix Model for Sequence-
Dependent Binding

Introduced in mid-80s by Berg + von Hippel (still the main contender)

TF contacts an L-base-pair DNA string. | | PWM: 4xL matrix e,(b,) contains all info |
Uncorrelated additive model for affinity:| | about sequence specificity of binding.
E(b,b, ..b)) = ey(b,)+e,(b,)+ .. +e,(b,) Compressed rep’n of complex physicsl

Different TFs will have different PWMs. The elements of the PWM can be
estimated by /n vifro biochemical experiments (Stormo efal), but this

is really hard work. B+vH proposed an algorithm for estimating energy from
statistics of the known binding sites (evolution as statistical mechanics):

If N,(b) is the number of occurrences of base at position :

max, N;(a) + 1

then estimate e(b)= N >0

N;(b) +1

Normalization: most common base is assigned e=0 by convention
Consensus site: all sub-energies = O; may not exist in the actual genome
Pseudocount: rational approach to N(b)=0 observation (blowup issue)



Energy from Sequence by Optimization

K

Special sites 7

with known relative affinities p;

Linear site energy function (PWM):

Probability of finding TF bound to site r:

Probability to fish out N copies of & with TF bound to n, times fo site s, (eftc.) with n,
proportional To the relative affinities is [ e e TRy L e R e h

Maximize that probability by varying the elements of the PWM:

>3 U= —log(Proby)/N = —-XK_ 2k log(p(s*))
Unlikelihood: i = S
= Y 1P E(S") + log(Zuce e—'")
e ; €T ' oy r— )
Minimize by varying | S R A Gl
> e _‘Ji_'=l.r'}-il."bt.‘h 'I «— —Ei{w)

CTCYF P O¢€a(b) ZucG €XP

ty(s) = 1.0 depending on whether s has base b at position a or not

Minimum identifies * best’' energy parameters given the data. Using
random genome yields the B+vH formula of the previous slidel



Matrix Model for Sequence-
Dependent Binding

Introduced in mid-80s by Berg + von Hippel (still the main contender)

TF contacts an L-base-pair DNA siring. PWM: 4xL matrix e,(b_) contains all info
Uncorrelated additive model for affinity:| | about sequence specificity of binding. |
E(b,b, b)) = ey(b)+e,(b,)* .. +e/(b) | , Compressed rep’'n of complex physicsl

Different TFs will have different PWMs. The elements of the PWM can be
estimated by /n vifro biochemical experiments (Stormo efal), but this

is really hard work. B+vH proposed an algorithm for estimating energy from
statistics of the known binding sites (evolution as statistical mechanics):

If N(b) is the number of occurrences of base at position :

max, N;(a) + 1

then estimate e(b)= >0

N;(b) +1

Normalization: most common base is assigned e=0 by convention
Consensus site: all sub-energies = O; may not exist in the actual genome
Pseudocount: rational approach to N(b)=0 observation (blowup issue)



Energy from Sequence by Optimization

1 K

Special sites s*.....s™ with known relative affinities p;

Linear site energy function (PWM):

Probability of finding TF bound to site r:

Probability to fish out N copies of & with TF bound to n, times fo site s, (efc.) with n,
proportional to the relative affinities is Probyx = j-_”_..'.-l )™ s2\n2 . pl <Kk

Unlikelihood: e (N e i
0l E.Q:I)".'JL'EE S -:I + ]-t ]'—Il Eu =G e — a I
g : - Y 46f ) s — )
Minimize by varying [ilka  jag by _ ZueG t(u) exp

energy parameters:

ty(s) = 1.0 depending on whether s has base b at position a or not

Minimum identifies " best’' energy parameters given the data. Using
random genome yields the B+vH formula of the previous slidel



Transcription factor binding statistics: Lacl

Given sequences for the strongest sites, construct the sequence-dependent energy
function; run it over the genome to find site binding energy distribution; ...

sequences of the three LacI sites (21 bp)

i | S = - o match observed frequencies
365546 | 0809 | AATTGTGAGCGGATAACAATT : : ™
365446 | 0799 | AATTGTTATCCGCTCACAATT = ;m : C O_fss‘n 16T0_
365145 | 4068 | AAATGTGAGCGAGTAACAACC ) 5000 1:60—3 051 1:60%
365145 | 4058 | GGTTGTTACTCGCTCACATTT 0516 | 0916 | 1609 | 0000
365638 | 6449 | GGCAGTGAGCGCAACGCAATT 1099 | 1792 | 1792 | 0000
365638 | 6439 | AATTGCGETTGCGCTCACTGCC 1946 | 1946 | 0000 | 1346
1792 | 1099 | 1792 | 0.000
1609 | 1609 | 0000 | 0511
s 0000 | 1792 | 1792 | 1099
o 1386 | 0693 | 0000 | 0288
Lo 1609 | 0000 | 0616 | 00916
* now look at all possible [ 1386 | 0000 | 0000 | 1386
= B . S 0516 | 0916 | 0000 | 1609
P -' sites in the E Coli 0.288 0.000 0.693 1386
tail of predicted  J B genome 1099 1.792 1792 | 0.000
high af finity sites o 3 0.511 0.000 1609 1609 |
s . 0000 | 1792 | 1099 | 1792
. 1946 | 0000 | 1946 | 1946
l e s (— 0000 | 1792 | 1792 | 1099
o ., 0000 | 1609 | 0516 | 0516
2202 s00e Sess 1609 | 0511 | 1609 | 0000
0 5 0 15 20 25 30 1.609 0511 1609 | U.SCG

PR oo LT A SRRSO o T gz

B+vH rule assigns entries in PWM to

YT =M a1 A0 LN Q1A 1 T892



Energy from Sequence by Optimization

K

Special sites s.....s™ with known relative affinities p;

Linear site energy function (PWM):

Probability of finding TF bound to site r:

Probability to fish out N copies of & with TF bound to n, Tirnes to site s, (etc.) with n,
proportional to the relative affinities is Probx = p(sh)™p(s*)"2 ... p(s% )%

—log(Proby)/N = —Xf 2 = log(p! s*))

— E?—-l!”-‘: E'i. -'-‘-"k ) + ].i_.lj;__[_ LineG e—E(u)

Unlikelihood:

e ; o Y LN e )
Minimize by varying [k (k) _ Zuec G(w) exp

energy parameters: [KEGHid YucG eXp—EM®)

ty(s) = 1.0 depending on whether s has base b at position a or not

Minimum identifies " best' energy parameters given the data. Using
random genome yields the B+vH formula of the previous slidel



Transcription factor binding statistics: Lacl

Given sequences for the strongest sites, construct the sequence-dependent energy
function; run it over the genome to find site binding energy disiribution; ...

sequences of the three LacI sites (21 bp)

B+vH rule assigns entries in PWM to

i} S = e match observed frequencies
365546 | 0809 | AATTGTGAGCGGATAACAATT i ; 5
365446 | 0799 | AATTGTTATCCGCTCACAATT A € 6 L
0000 | 1609 | 0511 | 1609
365145 | 4068 | AAATGTGAGCGAGTAACAACC ﬁ 0000 | 1500 T 05 T 1509
365145 | 4058 | GGTTGTTACTCGCTCACATTT 0516 | 0916 | 1609 | 0000
365638 | 6449 | GGCAGTGAGCGCAACGCAATT 1099 | 1792 | 1792 | 0000
365638 | 6439 | AATTGCETTGCGCTCACTGLC 1946 | 1946 | 0000 | 1946
1792 | 1099 | 1792 | 0000
1609 | 1609 | 0000 | 0511
ot 0000 | 1792 | 1792 | 1099
o 1386 | 0693 | 0000 | 0.288
Lo 1609 | 0000 | 0916 | 0916
* now look at all possible [ 1386 | 0000 | 0000 | 1386
= E Ner o 0516 | 0916 | 0000 | 1609
~ : sites in the E Coli 0288 | 0000 | 0693 1386
tail of predicted  J ° genome 1099 1.792 1.792 0.000
high af finity sites o * 0.511 0.000 1609 1609
= . 0000 | 1792 | 1099 | 1792
> . 1946 | 0000 | 1946 | 1946
i - “ e 0000 | 1792 | 1792 | 1099
o ., 0000 | 1609 | 0516 | 0516
2220 s00e Sess 1609 | 0511 | 1609 | 0000
0 5 0 15 20 25 30 1.609 0511 1609 | U.SCG

R e G LT O NSRS T = Y =NNMMN a1 4ANQ LN 0Q148 01 7092



Side Remark: Energy Landscape Issue

LacI Sites in Ecoli: Initial
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Sites close to zero (strongest affinity) are functional: they are extreme outliers, rare.

Sites with less exireme energy are numerous, not functional per se, but affect rate of
TF diffusion on the DNA: whole spectrum determines TF response time.

There seems to be a conflict between specificity (strong binding to few sites) and
known speed of response (transcription fums on in minutes or less).

Physics of diffusion leads Mirny/Slutsky to propose 2-state picture of TF binding tc
DNA (non-specific vs specific). Structural studies quite neatly confirm this story.



A problem for LacI and its "solution” by optimization

(expand the tail from previous plot) Main site that governs LacTI transcription is well
separated from the rest of the genome.

v

o

= But 2 subsidiary sites are not: they compete with

. ~ 10 other sites elsewhere in the genome.

= known sites

E There are only a few LacI molecules in the cell,

B | so how do they find their true active sites?

= .

- na - o

0 s 1T 6 A "gap” in the energy spectrum would be good!

energy

(also, statistics of non-functional sites may be
related to kinetics of finding functional sites)

itial PWM was a rough guess. Can we do better?

eed strong binding tfo known sites and weak
nding fo the rest of the genome.

note the gap !

zturn to our optimization problem for (3x21)/2
dependent entries of the PWM, but do it for the

tual genome, not a random approximation.

number of sites

v ——

olve by relaxation/MC to find best parameters! 4 8 12
odest computer exercise, even for large genome. energy

o




Broad regulator is different ...

ven with optimization, known sites are buried
n a dense background of predicted sitfes ...
nown sites also seem to have a very broad
ange of affinities

# of sites

rp is a broad metabolic regulator, known to requlate
any genes, unlike LacT which regulates one operon.
ome of the 48 known sites:
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Has our simple model failed?

Without simple models, how will
we get to the network level?

Might the myriad predicted
sites be functional?

Strong tendency for low-E sites
to be in non-coding regions ...



Bringing in Evidence from Evolution

“Spurious” sites could in fact be functional: they lie in non-coding regions. If
so, they should have clear orthologs in nearby organisms. Experimental test?

Strategy: take ecoli and salmonella; find all orthologous intergenic regions;
align them (ClustalW): assemble population of predicted intergenic ecoli sites
for Crp: they align to 22bp sequences in salmonella; defines a population of
sites in salmonella; ask if mutation pattern is nonrandom.

Some data: ~3500 intergenic regions in both genomes. Call them orthologous
if flanked by same genes (by name). ~1500 orthologous intergenic regions!
Mean intergenic mutation rate (after alignment) is 25% (quite a lot!).

Ecoli sites are selected using their Crp PWM energies. Salmonella sites are
generated purely by alignment, have many mutations: no a priori need to be
strong binders. N.B. Ecoli and salmonella Crp are virtuadlly identical (1 aa).

Key points: We don't expect (don't see) strict sequence conservation
Between orthologous sites. Binding energy, not sequence is conserved.
Also, the useful tests are population-based.



Orthology and Alignment of Genomes + Sites

Example of intergenic region with
predicted ecoli binding site for Crp:

oy — —

TACTGCTAATTCGCGCTGTTTTTGRACTACTCGTA

s e ——
L TARAATTTTH CARL

CCETCGCCAGCACGRAACGAARRRATTTTCCTGCTC

TXXTXTXTXXEXEXXTXX EXXXTXXXXX x x

Wy Wy T T i T M o o, iy gy
i Filg | L .1 L= B 1= — 4 — i - - et ] - |
£330 a2 L Nl L A Tl W W PN L AT AT LS

\ ; \ TH—TH
gl 1l 1lB8\AT. 1 LRI ARLES]L 9V R\ ] L 11 L §

T T T I I e T T e T T T T e g S TR, e T T (T = T, T T
ATCCTCTTTTCGTCACGTCCGACCAALRGATTGCCE Bl rl =

Tl-rr
sl el ioioiomaial 1 - - -

- - N
XXX X X X x A X XTETXTETRXEXEXX x E X XTEXTIXITXTXITXTXEXNX T ETEIXETEXT XX

T ST

TGTATCAGZALRATAL

XXX TXEXETXX

Alignment of related sequences amounts to finding the most parsimonious way

of mutating one into the other (including possibility of creating gaps). Powerful
software readily available: ClustalW used here. Can also search for "most likely”
ancestor sequence of the descendants (well-studied subject in comp-bio).



Evolution reveals function of new Crp sites

ompare E Coli to Salmonella.

ake a predicted strong binding site in E Coli and find the siring to which it aligns in
balmonella ... the sequence is not (quite) the same: note locations of mutations.

ollect data on a population of such sites ...

- mutations are highly non-random

: pattern matches Crp weight matrix:
0.4+ mutations rare where wrong base
costs large energy

m
D
WL

(4]
-4
m
N

0.3} = B
= W v A evolution conserves the (theoretical)
s 0.2 7 4 binding energy - more than sequence
E: 3 . -
5 gyl =" . suggests that predicted sites with
I e e strong binding are functional
N I

= 5 (CT Brown & C Callan, PNAS 2004)

position along sequence




Binding Energy, Not Sequence, is Conserved

Contribution of different site positions
to Crp energy averaged over top 100
(non-coding) sites in genome

4
e
-
et
=
8
2

Comparison with mutation profile is
instructive: mutation is least likely in

Positions contributing most strongly
to binding energy.

RAveracge snergy

Solid line shows average over 100 best-binding sites in non-coding regions

* Binding energies correlate between two species (not just sequence conservation).
* Positional mutation profile is a strong function of predicted binding energy.

* Underlying cause must be primarily conservation of site binding energy.

* Suggests that PWM binding energy is a reasonable surrogate for the real thing.




Other Transcription Factors, Other Genomes

lexA in ecoli:
regulator for SOS(lexA) regulon

cutoff  total | coding noncoding | known
1.00 - 0% 100% 1/19
3.00 0% 100% 4/19
5.00 - 0% 1007 100/19
7.00 ) 11°4 80% 16/19
9.00 444 51y 19/19

CHP hinding =ies iC_cul= 3

Crp in Sargasso Sea Shotgun Genomesl |

Two (mcultured) strains of Shewanella sequenced
from sea water! Use ecoli Crp PWM to scan for E<9
binding sites. Familiar mutation profiles emerge!

strain  total in genes intergenic known
S.oneid. 342 41% 59% 27/48
S. SAR1 284 20% 80% 27/48

p - - —— e Page 27/28
S. SAR2 355 25% 5% 27/48 ol : . .

20




Fluctuations, Noise and Genetic
Switch Stabilty

® Many cellular processes depend on presence (absence) of a
small number of actors (TFs, signaling molecules, photons, ..)

® The associated fluctuations and noise have critical influence
on how things work (not always fully appreciated):

® Sensing chemical gradients (chemotaxis)
e Stability of genetic switches (phage lysis/lyosogeny)
® (Can agene do more than just beonor ?

® Remarkably little is known about this: the stochastic
properties of cellular events are just beginning to be
explored quantitatively (its not just Poisson).



