Title: On Potential Effects of Modified Dispersion Relations

Date: Nov 30, 2004 04:05 PM

URL: http://pirsa.org/04110041

Abstract:

Pirsa: 04110041 Page 1/51

On Potential Effects of Modified Dispersion Relations

Sven Bachmann

University of Waterloo & EPFL, Lausanne

MODIFIED DISPERSION RELATION I

Thought experiments & various models of quantum gravity

⇒ Planck scale physics could manifest itself through modified dispersion relation

Has been shown to be compatible with a generalized Principle of Relativity (e.g. Smolin)

Usual program:

- Choose a class of modified dispersion relation
- Implement it in calculations involving UV physics
- Determine if and how the modification in UV physics affects observable predictions

MODIFIED DISPERSION RELATION II

Inflation (>200 papers)

- Sensitive to Planck scale physics for some dispersion relation
- Level of sensitivity not clearly identified
- Backreaction problem
- Recently suggested: the backreaction contribution could be absorbed into a redefinition of inflaton potential (Brandenberger et al.)

⇒ Possible window to Planck scale physics!

Pirea: 0/11/00/11

MODIFIED DISPERSION RELATION III

Other UV-sensitive problems:

- Black hole radiation spectrum (Unruh, etc.)
- Gamma Ray Bursts (Amelino-Camelia, Sakharov & Ellis)

BUT

- Ad hoc choice of dispersion relation or low order corrections not general classes of dispersion relation
- Regularization / renomalization scheme inependence?

MODIFIED DISPERSION RELATION IV

- ⇒ New program:
- Choose structurally simplest phenomenon involving UV physics:
 the Casimir effect
- Use generic classes of dispersion relation
- Make sure the results are independent of the regularization scheme
- Draw most general conclusions about UV/IR coupling

Most probably no measurable effects, but could act as a model:

- Find a precise mapping: dispersion relation ⇒ Casimir force
- What mathematical methods succeed?

QUANTUM VACUUM ENERGY

Canonical Field Quantization:

- Decompose the field into Fourier modes in a box
- Consider each mode as a quantum harmonic oscillator
- Impose canonical commutation relations
 - ⇒ Each mode fluctuates even in ground state
 - \implies Infinite vacuum energy: $E_0 = \frac{1}{2} \sum_{n=0}^{\infty} \omega_n$

Key fact: Boundary conditions change

 \Rightarrow set of allowed modes change $\Rightarrow \Delta E_0$

Casimir force
$$F = -\frac{\partial}{\partial L} E_0$$

PROBLEM SETUP

Model (general)

And we shall let $M \rightarrow \infty$

With the unmodified spectrum between the plates

$$\{k_n\}_{n=1}^{\infty} = \{\frac{n\pi}{L}\}_{n=1}^{\infty}$$

But: UV modified dispersion relation: $\omega(\mathbf{k}) = \mathbf{k}_{pl} \mathbf{f} \left| \frac{\mathbf{k}}{\mathbf{k}_{pl}} \right|$

where k_{pl} ~ scale of new physics, Planck scale f(x): Some generic function, such that:

- $f(x) \approx x, x \ll 1$
- $f(x) \ge 0$

DERIVATIONI

Energy density generally still infinite \implies UV regulator (UV cutoff)

For simplicity, use e.g. <u>exponential damping function</u> with parameter α (must be removed later)

$$E_0^{inside} = \frac{1}{2} \sum\nolimits_{n=1}^\infty k_{pl} f \left| \frac{n \pi}{k_{pl} L} \right| e^{-\alpha k_{pl} f \left| \frac{n \pi}{k_{pl} L} \right|}$$

The energy density on the other side of the plates is

$$D_0^{\text{outside}} = \frac{k_{pl}^2}{2\pi} \int_0^\infty dx \, f(x) e^{-\alpha k_{pl} f(x)}$$

$$\Rightarrow$$
 The force is thus: $F_{\alpha} = -\frac{\partial}{\partial L} E_0^{\text{inside}} + D_0^{\text{outside}}$

PROBLEM SETUP

Model (general)

And we shall let $M \rightarrow \infty$

With the unmodified spectrum between the plates

$$\{k_n\}_{n=1}^{\infty} = \{\frac{n\pi}{L}\}_{n=1}^{\infty}$$

But: UV modified dispersion relation:

$$\omega(\mathbf{k}) = \mathbf{k}_{pl} \mathbf{f} \left| \frac{\mathbf{k}}{\mathbf{k}_{pl}} \right|$$

where k_{pl} ~ scale of new physics, Planck scale f(x): Some generic function, such that:

- $f(x) \approx x, x \ll 1$
- $f(x) \ge 0$

DERIVATIONI

Energy density generally still infinite \implies UV regulator (UV cutoff)

For simplicity, use e.g. exponential damping function

with parameter α (must be removed later)

$$E_0^{inside} = \frac{1}{2} \sum\nolimits_{n=1}^\infty k_{pl} f \left| \frac{n \pi}{k_{pl} L} \right| e^{-\alpha k_{pl} f \left| \frac{n \pi}{k_{pl} L} \right|}$$

The energy density on the other side of the plates is

$$D_0^{\text{outside}} = \frac{k_{pl}^2}{2\pi} \int_0^\infty dx \, f(x) e^{-\alpha k_{pl} f(x)}$$

$$\Rightarrow$$
 The force is thus: $F_{\alpha} = -\frac{\partial}{\partial L} E_0^{\text{inside}} + D_0^{\text{outside}}$

DERIVATION II

Fortunately we have the Euler MacLaurin formula:

$$\sum\nolimits_{n=a+1}^{b} u(n) = \int\nolimits_{a}^{b} u(t) dt + \sum\nolimits_{r=0}^{k} \frac{(-1)^{r+1} B_{r+1}}{(r+1)!} \big[u^{(r)}(b) - u^{(r)}(a) \big] + \cdots$$

Note:

- There is an integral rest
- If u is infinitely differentiable, can take the limit $k \to \infty$
- Careful of convergence of the series / the integral rest
- Careful with limit b→∞
- $B_{2r-1}=0$, r>1, only the <u>odd derivatives</u> appear

DERIVATION III

Apply E.-ML here:

$$F_{\alpha} = \frac{k_{pl}}{2} \left[\sum_{n} t_{n} f'(t_{n}) e^{(-\alpha k_{pl} f(t_{n}))} \left[1 - \alpha k_{pl} f(t_{n}) \right] + \frac{k_{pl}}{\pi} \int_{0}^{\infty} f(x) e^{-\alpha k_{pl} f(x)} dx \right]$$

Integrate by parts
$$\Rightarrow \sim -\int_0^\infty f(x)e^{-\alpha k_{pl}f(x)} + boundary$$

⇒ The two integrals cancel out each other!

Remarks:

- Analytic dispersion relation: sum to infinity
- Arrive at single series with Bernoulli numbers

DERIVATION II

Fortunately we have the Euler MacLaurin formula:

$$\sum\nolimits_{n=a+1}^{b} u(n) = \int\nolimits_{a}^{b} u(t) dt + \sum\nolimits_{r=0}^{k} \frac{(-1)^{r+1} B_{r+1}}{(r+1)!} \big[u^{(r)}(b) - u^{(r)}(a) \big] + \cdots$$

Note:

- There is an integral rest
- If u is infinitely differentiable, can take the limit $k \to \infty$
- Careful of convergence of the series / the integral rest
- Careful with limit b→∞
- $B_{2r-1}=0$, r>1, only the <u>odd derivatives</u> appear

DERIVATION III

Apply E.-ML here:

$$F_{\alpha} = \frac{k_{pl}}{2} \left[\sum_{n} t_{n} f'(t_{n}) e^{(-\alpha k_{pl} f(t_{n}))} \left[1 - \alpha k_{pl} f(t_{n}) \right] + \frac{k_{pl}}{\pi} \int_{0}^{\infty} f(x) e^{-\alpha k_{pl} f(x)} dx \right]$$

Integrate by parts
$$\Rightarrow \sim -\int_0^\infty f(x)e^{-\alpha k_{pl}f(x)} + boundary$$

⇒ The two integrals cancel out each other!

Remarks:

- Analytic dispersion relation: sum to infinity
- Arrive at single series with Bernoulli numbers

DERIVATION IV

Finally:

- Having introduced a damping function, could control infinities
- Now, remove cutoff by taking $(\alpha \rightarrow 0)$
- Hence, the Casimir force is:

$$F = \frac{k_{pl}}{2 \pi L} \sum\nolimits_{r=1}^{\infty} {(- 1)^r (2r - 1)} {\left| {\frac{1}{2k_{pl} L}} \right|^{2r - 1}} \zeta (2r) f^{(2r - 1)} (0)$$

Encodes all possible information!

In the linear case:
$$F_{\text{Cas}} = -\frac{\pi}{24 \, \text{L}^2}$$
 ok.

FIRST ANALYSIS I

Example: analytic dispersion relation $f(x) = \sum v_s x^s$

We get
$$F \sim \frac{1}{L} \sum_{r} (-1)^{r} \left| \frac{L_{pl}}{L} \right|^{(2r-1)} (2r-1)! v_{2r-1}$$

- Important features: Asymptotically goes to zero as $\bot \to \infty$
 - This has alternating signs
 - The coefficients grow factorially faster
 - $L_{pl}/L \sim 10^{-27}$ If L is a measurement scale and L_{pl} at Planck scale so this ratio decreases rapidly as Γ grows
- \implies In order to have non zero radius of convergence, we need to have $v_{2r-1} \sim [(2r-1)!]^{-1}$ when $r \to \infty$ (at least)
- ⇒ Competing effects in r: polynomial decrease vs factorial blowup

FIRST ANALYSIS II

Example: polynomial dispersion relation:

- The sum is truncated: No convergence issues!
 The force is defined for short L
 BUT might show new behaviour close to K_{pl}
- Two different cases:
 - i. The v_s are of order $[(2r-1)!]^{-1} \Rightarrow polynomial$ decrease of $F(L) \Rightarrow No$ measureable effects
 - ii. There is at least one v_{2r-1} which is of order 1 and comes with a high power so that the factorial dominates \implies measureable effects! But Γ has to be of order L_{pl}/L

FIRST ANALYSIS I

Example: analytic dispersion relation $f(x) = \sum v_s x^s$

We get
$$F \sim \frac{1}{L} \sum_{r} (-1)^{r} \left| \frac{L_{pl}}{L} \right|^{(2r-1)} (2r-1)! \nu_{2r-1}$$

- Important features: Asymptotically goes to zero as $\bot \to \infty$
 - This has alternating signs
 - The coefficients grow factorially faster
 - $L_{pl}/L \sim 10^{-27}$ If L is a measurement scale and L_{pl} at Planck scale so this ratio decreases rapidly as Γ grows
- \Rightarrow In order to have non zero radius of convergence, we need to have $v_{2r-1} \sim [(2r-1)!]^{-1}$ when $r \to \infty$ (at least)
- ⇒ Competing effects in r: polynomial decrease vs factorial blowup

FIRST ANALYSIS II

Example: polynomial dispersion relation:

- The sum is truncated: No convergence issues!

 The force is defined for short L

 BUT might show new behaviour close to K_{pl}
- Two different cases:
 - i. The v_s are of order $[(2r-1)!]^{-1} \Rightarrow$ polynomial decrease of $F(L) \Rightarrow$ No measureable effects
 - ii. There is at least one v_{2r-1} which is of order 1 and comes with a high power so that the factorial dominates \implies measureable effects! But Γ has to be of order L_{pl}/L

FIRST ANALYSIS I

Example: analytic dispersion relation $f(x) = \sum v_s x^s$

We get
$$F \sim \frac{1}{L} \sum_{r} (-1)^{r} \left| \frac{L_{pl}}{L} \right|^{(2r-1)} (2r-1)! \nu_{2r-1}$$

- Important features: Asymptotically goes to zero as $\bot \to \infty$
 - This has alternating signs
 - The coefficients grow factorially faster
 - $L_{pl}/L \sim 10^{-27}$ If L is a measurement scale and L_{pl} at Planck scale so this ratio decreases rapidly as Γ grows
- \Rightarrow In order to have non zero radius of convergence, we need to have $v_{2r-1} \sim [(2r-1)!]^{-1}$ when $r \to \infty$ (at least)
- ⇒ Competing effects in r: polynomial decrease vs factorial blowup

FIRST ANALYSIS II

Example: polynomial dispersion relation:

- The sum is truncated: No convergence issues!
 The force is defined for short L
 BUT might show new behaviour close to K_{pl}
- Two different cases:
 - i. The v_s are of order $[(2r-1)!]^{-1} \Rightarrow polynomial$ decrease of $F(L) \Rightarrow No$ measureable effects
 - ii. There is at least one v_{2r-1} which is of order 1 and comes with a high power so that the factorial dominates \implies measureable effects! But Γ has to be of order L_{pl}/L

FIRST ANALYSIS I

Example: analytic dispersion relation $f(x) = \sum v_s x^s$

We get
$$F \sim \frac{1}{L} \sum_{r} (-1)^{r} \left| \frac{L_{pl}}{L} \right|^{(2r-1)} (2r-1)! \nu_{2r-1}$$

- Important features: Asymptotically goes to zero as $\bot \to \infty$
 - This has alternating signs
 - The coefficients grow factorially faster
 - $L_{pl}/L \sim 10^{-27}$ If L is a measurement scale and L_{pl} at Planck scale so this ratio decreases rapidly as Γ grows
- \Rightarrow In order to have non zero radius of convergence, we need to have $v_{2r-1} \sim [(2r-1)!]^{-1}$ when $r \to \infty$ (at least)
- ⇒ Competing effects in r: polynomial decrease vs factorial blowup

FIRST ANALYSIS II

Example: polynomial dispersion relation:

- The sum is truncated: No convergence issues!
 The force is defined for short L
 BUT might show new behaviour close to K_{pl}
- Two different cases:
 - i. The v_s are of order $[(2r-1)!]^{-1} \Rightarrow$ polynomial decrease of $F(L) \Rightarrow$ No measureable effects
 - ii. There is at least one v_{2r-1} which is of order 1 and comes with a high power so that the factorial dominates \implies measureable effects! But Γ has to be of order L_{pl}/L

REGULARIZATION

In any case, the result is independent of the choice of cutoff function

Choose any γ_{α} such that

i. Regularizes the sum:
$$E_0 \sim \sum f(\xi_n) \gamma_{\alpha}[f(\xi_n)] < \infty$$

ii. It is a cutoff function:

•
$$\gamma_{\alpha} \approx 1$$
 when $x \ll 1$

•
$$\gamma_{\alpha} \approx 0$$
 when $x \gg 1$

•
$$\gamma_{\alpha} \in \mathbb{C}^{\infty}$$
 $\lim_{\alpha \to 0} \gamma_{\alpha} \equiv 1$

--- Euler-MacLaurin can be used

& full divergent series recovered as $(\alpha \rightarrow 0)$

EXAMPLES

Concrete examples of dispersion relations

i. Exponential

- Very fast convergence above the Planck length
- Finite radius of convergence

⇒ suggests minimal length scale

ii. Polynomial

- Fast convergence above L_{pl}
- Well defined at all distances, but new behaviour at cutoff scale

INTEGRAL KERNEL I

From a functional analysis point of view:

 $K:[dispersion relations] \rightarrow [Casimir forces]$

$$f(k) \rightarrow F(L)$$

$$K = \frac{k_{pl}}{2\pi L} \sum_{j=1}^{n} (-1)^{r} (2r-1) \left| \frac{1}{2k_{pl}L} \right|^{2r-1} \zeta(2r) \frac{d^{(2r-1)}}{dk^{(2r-1)}} (k=0)$$

We have K explicitely!

⇒ Encodes all information in a straightforward way!

We find an integral kernel representation:

$$K[f](L) = \frac{k_{pl}^2}{\pi} \Re \int_0^\infty i^{(-1)} f(i\kappa) (1 - \kappa \Lambda) e^{(-\kappa \Lambda)} d\kappa$$

Concrete examples of dispersion relations

i. Exponential

- Very fast convergence above the Planck length
- Finite radius of convergence

⇒ suggests minimal length scale

ii. Polynomial

- Fast convergence above L_{pl}
- Well defined at all distances, but new behaviour at cutoff scale

INTEGRAL KERNEL I

From a functional analysis point of view:

 $K : \{dispersion \, relations\} \rightarrow \{Casimir \, forces\}$

$$f(k) \rightarrow F(L)$$

$$K = \frac{k_{pl}}{2\pi L} \sum_{j=1}^{n} (-1)^{r} (2r-1) \left| \frac{1}{2k_{pl}L} \right|^{2r-1} \zeta(2r) \frac{d^{(2r-1)}}{dk^{(2r-1)}} (k=0)$$

We have K explicitely!

⇒ Encodes all information in a straightforward way!

We find an integral kernel representation:

$$K[f](L) = \frac{k_{pl}^2}{\pi} \Re \int_0^\infty i^{(-1)} f(i\kappa) (1 - \kappa \Lambda) e^{(-\kappa \Lambda)} d\kappa$$

INTEGRAL KERNEL II

- Neglecting $\zeta(2r)$, this is exact as soon as the integral converges
- Essentially the Laplace transform of the Wick rotated disp. relation
- Downsides:
 - i. Involves analytic continuation into the complex plane
 - ii. Not very intuitive

Solution: It suffices to write:

$$f(x)=xg(x^2)$$

Then:

$$K[f](L) = \frac{k_{pl}}{\pi} \int_{0}^{\infty} \kappa g(-\kappa^{2}) (1 - \kappa \Lambda) e^{(-\kappa \Lambda)} d\kappa$$

Pirsa: 04110041

INTEGRAL KERNEL III

This expression is:

- Much more convenient: analytic continuation in the negative reals only
- This can be written as an exact Laplace transform:

$$K[f](L) = \frac{k_{pl}}{\pi} \left[1 + \Lambda \frac{d}{d\Lambda} \right] \int_{0}^{\infty} \kappa g(-\kappa^{2}) e^{(-\kappa\Lambda)} d\kappa$$

(Note: Analytic continution is unique: $g(x^2)$ determines $g(-x^2)$ All information about the force already encoded in the <u>physical part</u> of the dispersion relation)

INTEGRAL KERNEL II

- Neglecting $\zeta(2r)$, this is exact as soon as the integral converges
- Essentially the Laplace transform of the Wick rotated disp. relation
- Downsides:
 - i. Involves analytic continuation into the complex plane
 - ii. Not very intuitive

Solution: It suffices to write:

$$f(x)=xg(x^2)$$

Then:

$$K[f](L) = \frac{k_{pl}}{\pi} \int_{0}^{\infty} \kappa g(-\kappa^{2}) (1 - \kappa \Lambda) e^{(-\kappa \Lambda)} d\kappa$$

Pirsa: 04110041

INTEGRAL KERNEL III

This expression is:

- Much more convenient: analytic continuation in the negative reals only
- This can be written as an exact Laplace transform:

$$K[f](L) = \frac{k_{pl}}{\pi} \left[1 + \Lambda \frac{d}{d\Lambda} \right] \int_{0}^{\infty} \kappa g(-\kappa^{2}) e^{(-\kappa\Lambda)} d\kappa$$

(Note: Analytic continution is unique: $g(x^2)$ determines $g(-x^2)$

All information about the force already encoded in the <u>physical part</u> of the dispersion relation)

Pirea: 0/11/00/11

Properties of the transformation K:

- As a Laplace transform: supresses heavily the large k.
- The kernel as a function of k:

i. Its integral vanishes:
 F(L) depends only on the energy difference

ii. Changes sign at
$$k = \frac{1}{2L}$$

⇒ short wavelengths tend to cancel out long ones.

iii. As L grows, we probe the long wavelengths

INTEGRAL KERNEL III

This expression is:

- Much more convenient: analytic continuation in the negative reals only
- This can be written as an exact Laplace transform:

$$K[f](L) = \frac{k_{pl}}{\pi} \left[1 + \Lambda \frac{d}{d\Lambda} \right] \int_{0}^{\infty} \kappa g(-\kappa^{2}) e^{(-\kappa\Lambda)} d\kappa$$

(Note: Analytic continution is unique: $g(x^2)$ determines $g(-x^2)$ All information about the force already encoded in the <u>physical part</u> of the dispersion relation)

Properties of the transformation K:

- As a Laplace transform: supresses heavily the large k.
- The kernel as a function of k:

i. Its integral vanishes: F(L) depends only on the

F(L) depends only on the energy <u>difference</u>

ii. Changes sign at
$$k = \frac{1}{2L}$$

⇒ short wavelengths tend to cancel out long ones.

iii. As L grows, we probe the long wavelengths

INTEGRAL KERNEL III

This expression is:

- Much more convenient: analytic continuation in the negative reals only
- This can be written as an exact Laplace transform:

$$K[f](L) = \frac{k_{pl}}{\pi} \left[1 + \Lambda \frac{d}{d\Lambda} \right] \int_{0}^{\infty} \kappa g(-\kappa^{2}) e^{(-\kappa\Lambda)} d\kappa$$

(Note: Analytic continution is unique: $g(x^2)$ determines $g(-x^2)$ All information about the force already encoded in the <u>physical part</u>

of the dispersion relation)

INTEGRAL KERNEL II

- Neglecting $\zeta(2r)$, this is exact as soon as the integral converges
- Essentially the Laplace transform of the Wick rotated disp. relation
- Downsides:
 - i. Involves analytic continuation into the complex plane
 - ii. Not very intuitive

Solution: It suffices to write:

$$f(x)=xg(x^2)$$

Then:

$$K[f](L) = \frac{k_{pl}}{\pi} \int_{0}^{\infty} \kappa g(-\kappa^{2}) (1 - \kappa \Lambda) e^{(-\kappa \Lambda)} d\kappa$$

INTEGRAL KERNEL III

This expression is:

of the dispersion relation)

- Much more convenient: analytic continuation in the negative reals only
- This can be written as an exact Laplace transform:

$$K[f](L) = \frac{k_{pl}}{\pi} \left[1 + \Lambda \frac{d}{d\Lambda} \right] \int_{0}^{\infty} \kappa g(-\kappa^{2}) e^{(-\kappa\Lambda)} d\kappa$$

(Note: Analytic continution is unique: $g(x^2)$ determines $g(-x^2)$ All information about the force already encoded in the <u>physical part</u>

UV/IR COUPLING I

Properties of the transformation K:

- As a Laplace transform: supresses heavily the large k.
- The kernel as a function of k:

i. Its integral vanishes: F(L) depends only on the energy <u>difference</u>

ii. Changes sign at
$$k = \frac{1}{2L}$$

⇒ short wavelengths tend to cancel out long ones.

iii. As L grows, we probe the long wavelengths

UV/IR COUPLING II

The analytic continuation is unique... But:

Recall: $f(x)=xg(x^2)$

Which translates into:

- A dispersion relation essentially indistinguishable from the linear one
- ullet A Casimir force that stays <u>orders of magnitude away from the L^{-2} at</u> any chosen scale

UV/IR COUPLING III

Example:

Let us choose I to be a sharply peaked gaussian in the small negative k

- The dispersion relation is essentially the linear one
- The force function shows
 - i. a slightly different behaviour at short k
 - ii. a very strong effect on the long distance: orders of magnitude!

UV/IR COUPLING IV

Final point, truncation effects:

- The force might depend heavily on the power at which one decides to cut a series ⇒ both UV and IR modifications!
- e.g. Brandenberger & Martin:

$$f(\mathbf{x}) = \sqrt{\mathbf{x}^2 - \alpha \mathbf{x}^4 + \beta \mathbf{x}^6}$$

- ⇒ Classification of the possible effects w.r.t. UV/IR coupling
- Mathematically: dispersion relation determines Casimir force through
 - i. Analytic continuation
 - ii. Operator K
- However: can build functions with arbitrary UV/IR coupling!

What does that mean?

CONCLUSION

Using suitable g, could fit ANY experimental data to arbitrary (but not complete) precision.

Theory has to come first!

Quantum gravity theory <u>predicts</u> dispersion relation \implies (operator K) uniquely predicts Cas. force \implies compare to experiment

<u>Outlook</u>

- Carry out analogous program for actual QED
- The same work should be done for the other cases: inflation in particular, black hole evaporation, GRB

- ⇒ Classification of the possible effects w.r.t. UV/IR coupling
- Mathematically: dispersion relation determines Casimir force through
 - i. Analytic continuation
 - ii. Operator K
- However: can build functions with arbitrary UV/IR coupling!

What does that mean?

Piggs 04110041

CONCLUSION

Using suitable g, could fit ANY experimental data to arbitrary (but not complete) precision.

Theory has to come first!

Quantum gravity theory <u>predicts</u> dispersion relation \implies (operator K) uniquely predicts Cas. force \implies compare to experiment

<u>Outlook</u>

- Carry out analogous program for actual QED
- The same work should be done for the other cases: inflation in particular, black hole evaporation, GRB

Pirsa: 04110041 Page 47/51

- ⇒ Classification of the possible effects w.r.t. UV/IR coupling
- Mathematically: dispersion relation determines Casimir force through
 - i. Analytic continuation
 - ii. Operator K
- However: can build functions with arbitrary UV/IR coupling!

What does that mean?

UV/IR COUPLING IV

Final point, truncation effects:

- The force might depend heavily on the power at which one decides to cut a series ⇒ both UV and IR modifications!
- e.g. Brandenberger & Martin:

$$f(\mathbf{x}) = \sqrt{\mathbf{x}^2 - \alpha \mathbf{x}^4 + \beta \mathbf{x}^6}$$

UV/IR COUPLING IV

Final point, truncation effects:

- The force might depend heavily on the power at which one decides to cut a series ⇒ both UV and IR modifications!
- e.g. Brandenberger & Martin:

$$f(x) = \sqrt{x^2 - \alpha x^4 + \beta x^6}$$

UV/IR COUPLING II

The analytic continuation is unique... But:

Recall: $f(x)=xg(x^2)$

Which translates into:

- A dispersion relation essentially indistinguishable from the linear one
- ullet A Casimir force that stays <u>orders of magnitude away from</u> the L^{-2} at any chosen scale
 - ⇒ Extreme case: violation of decoupling!