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NAODIFIED DISPERSION RELATION |

Thought experiments & various models of quantum gravity

—> Planck scale physics could manifest itself through

modified dispersion relation

Has been shown to be compatible with a generalized Principle

of Relativity (e.g. Smolin)

Usual program:

s Choose a class of modified dispersion relation

= Iinplement it in calculations involving UV physics

« Determine if and how the modification in UV physics affects observable

predictions
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NAODIFIED DISPERSION RELATION 11

Inflation (>200 papers)

= Sensitive to Planck scale physics for some dispersion relation

= Level of sensitiviry not clearly identified

e Backreaction problem

= Recently suggested : the backreaction contribution could be absorbed

into a redefinition of inflaton potential (Brandenberger et al.)

—> Possible window to Planck scale physics!

r__'l
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NAODIFIED DISPERSION RELATION 11

Other UV-sensitive problems:

= Black hole radiation spectrum (Unruh, etc.)

= Gamma Ravy Bursts (Amelino-Camelia, Sakharov & Ellis)

BUT

s Ad hoc choice of dispersion relation or low order corrections
not general classes of dispersion relation

e Regularization / renomalization scheme inependence?
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NAODIFIED DISPERSION RELATION IV

—> New prograin:

= Choose structurally simplest phenomenon involving UV physics:

the Casimir effect

« Use generic classes of dispersion relation
s« Make sure the results are independent of the regularization scheme

= Draw most general conclusions about UV/IR coupling

Most probably no measurable effects, bur could act as a model :
« Find a precise mapping : dispersion relation —> Casimir force

s Whar mathematical methods succeed?
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QUANTUM VA CUUM ENERGY

Canonical Field Quantization:

s Decompose the field into Fourier modes in a box
« Consider each mode as a quantumm harmonic oscillator

= Impose canonical commutation relations
—> Each mode fluctuates even in ground state
. 1 =
—> Infinite vacuum energy: E,—— Z w
- - 2 n=—0 =

Key fact: Boundary conditions change

—> set of allowed modes change — AE,

Casimir force =~ F=—-E,
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PRROBLEM SETUP

—

Model (general)

M-I

L .
And we shall let M — «
W,
With the unmodified spectrum between the plates [k |* =[—]
T nJn=1 L L !
|
But: UV modified dispersion relation:  w(K)=k ;f N
Pl

K _,~ scale of new physics, Planck scale
where P : :

f(x): Some generic function, such that:
s f(X)=Xx,Xxx1
« f(x)=0
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DERIVATION |

Energy density generally still infinite —> UV regulator (UV cutoff)

For simplicity, use e.g. exponential damping function

with parameter o (must be removed later)

nm

oL il k—.—f |
Einside_ 1 Z L k f NI - XK kL
0 iy —1 Pl
x> kL.
The energy density on the other side of the plates is
'z
Doutmde . dX f{ = ]e_ﬂk?if =
2 m*
‘ : 0 id tsid
—> Thejorce s thus: I « A | 1 Emm E+DE“ B
e,
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PRROBLEM SETUP

I M-L. )

And we shall let M — o

o0
: - Fx Y -ILTT
With the unmodified spectrum bemween the plates |k |~ = —]
L e |
But: UV modified dispersion relation:  w(K)=K ;f o
pl

k .~ scale of new physics, Planck scale
where P! - '

f(x): Some generic function, such that:

s f(x)=X,xx1
« {(x)>0
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DERIVATION |

Energy density generally still infinite —» UV regulator (UV cutoff)

For simplicity, use e.g. exponential damping function

with parameter o (must be removed later)

_""I:i f nm
nside_ 1§~ nw | *SfEa
EZ:)I‘IS] e:_zn_l kplf - _
2 kI
The energy density on the other side of the plates is
'z
Doutmde et dX f{X }e_ﬂli-“lf -
2 ™
‘ : 0 id tsid
—> Thejorceis thus: Fn':_ I, Emm EHLI)EM =
o
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DERIVATION II

Fortunately we have the Euler MacLaurin formula:

e U7 By O(b)—u'"(a)|l+
u —u (a)|+--
=8 (et :

Zb u{n}:tI‘:u{t}dtJrZ

n—-a-+1

Note:

s« There is an integral rest

« If u is infinitely differentiable, can rtake the limir k — oc
« Careful of convergence of the series / the integral rest
s Careful with limit b — o

« B, =0, r>1, only the odd derivatives appear
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DERIVATION I11

Apply E.-ML here:

= O

k| L 1k
F = 2,1 ()1 —ak, f(t,)+ 2]

T

f(x)e =" dx

0

0 f(x)e =™ +bwﬂgfvy

—> The two integrals cancel out each other!

Integrate by parts —, ~

Remarks:
s Analvtic dispersion relation: sum to infinity

= Arrive at single series with Bernoulli numbers

10
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DERIVATION II

Fortunately we have the Euler MacLaurin formula:

< U7 By “(b)—u™(a)|+
u —U a)l+---
=0 (rx1)1 |

Zb u{n):bl':u{t}dtﬂtz

n=-a-+1

Note:

s« There is an integral rest

« If uis infinitely differentiable, can take the limir k — oc
« Careful of convergence of the series / the integral rest
« Careful with limit b— o

« B, =0, r>1, only the odd derivatives appear
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DERIVATION |11
Apply E.-ML here:
F _&Zt fl t —{‘fk;.'iftn '_1 k f{t ‘I‘E ‘If{ —f:'k?if:{ d
& 2 n ( ll)e _ — X plt\ n)_ = - 0 X)e b4
0

Integrate by parts —, -~ —|; f(x)e =™ +bg,mﬂ§rvy

—> The two integrals cancel out each other!

Remarks:
s Analvtic dispersion relation: sum to infinity

= Arrive at single series with Bernoulli numbers

10
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DERIVATION IV

Finally:

= Having introduced a damping function, could control infinities

= Now, remove cutoff by raking(o—0)

s Hence, the Casimir force is:

k = 1 Zr—1
| e — (1) (2r—1)|—— (2r)f* 1 (0)
2 nwl Zf:l 2 kp] | ¢
Encodes all possible information!
. T
In the linear case: F. _= ok!
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FIRST ANALYSIS |

Example: analytic dispersion relation f(x)=) v x°
Z2r—1

| L
We get Fxlfzr{—l)‘-f]- (2r—1)h

Important features: = Asymnpitotically goes to zeroas |, — «
« This has alternating signs
s The coefficients grow factorially faster
« L /L~1 0" IfL is a measurement scale
and 1. at Planck scale
so this ratio decreases rapidly as T grows
—> In order to have non zero radius of convergence, we need to

have Vv, [ 2r—1)! ] when T — X (ar least)

—> Competing effects in r: polynomial decrease vs factorial blowup
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FIRST ANALYSIS 11

Example: polynomial dispersion relation:
s The sum is truncated: No convergence issiies!
The force is defined for short L

BUT might show new behaviour close to kpl
s Two different cases:

i. The v, areof order [(2r—1)!["" => polynomial decrease
of (L) = No measureable effects

ii. There is at least one Var-1 which is of order 1 and comes with a
high power so that the factorial dominates = measureable effects!

But T has to be of order L.,/L.

L)
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FIRST ANALYSIS |

Example: analytic dispersion relation f(x)=) v_x°

(2r—1)
? |L
We get Fxlfzr{—lll Tpl (2 1) .

Important features: = Asympiotically goes to zeroas|.— «
« This has alternating signs
s The coefficients grow factorially faster
« L /L~1 0" IfLis a measurement scale
and 1., at Planck scale
so this ratio decreases rapidly as T grows
—> In order to have non zero radius of convergence, we need to

have Vv, [{21" 1)! ] when T — 0 (ar least)

—> Competing effects in r: polynomial decrease vs factorial blowup
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FIRST ANALYSIS |1
Example: polynomial dispersion relation:
e« The sum is truncated: No convergence issiies!

The force is defined for short L

BUT might show new behaviour close to kp]
= Two different cases:

i. The v, areof order [(2r—1)!]"" => polynomial decrease
of (L) = No measureable effects

ii. There is at least one Var-1 which is of order 1 and comes with a
high power so that the factorial dominates —> measureable effects!
But T has to be of order L.;/L.



™

X11

Applications Edit Window Help = . ¢4 B 38% mar. 16:27

FIRST ANALYSIS |

Example: analytic dispersion relation f(x)=) v_x°
2r—1]

, | L |
We get Fulfzr{'—l)l TP] (2r—1)tv, .

Important features: = Asympiotically goes to zeroas |, — «
« This has alternating signs
s The coefficients grow factorially faster
« L /L~1 0™*" IfL is a measurement scale
and 1., at Planck scale
so this ratio decreases rapidly as T grows
—> In order to have non zero radius of convergence, we need to

have 1'2[._1“[{21"—1 ]!]_l when T — %0 (at least)

—> Competing effects in r: polynomial decrease vs factorial blowup
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FIRST ANALYSIS 11

Example: polynomial dispersion relation:
e The sum is truncated: No convergence issiues!
The force is defined for short L

BUT might show new behaviour close to kp]
s Two different cases:

. : et 1 .
i. The v, areof order |(21—1)!|" = polynomial decrease
of F(L) = No measureable effects

ii. There is at least one Var-1 which is of order 1 and comes with a
high power so thar the factorial dominates — measureable effects!

But T has to be of order L.}/L.
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FIRST ANALYSIS |

Example: analytic dispersion relation f(x)=) v x°
(2r—1)

) | L
Wi pet F“lle,*"—l"l TPI (2r—1)!v,.,

Important features: = Asymmpiotically goes to zeroas |, — o«
« This has alternating signs
s The coefficients grow factorially faster
« L /L~1 0*" IfLis a measurement scale
and 1., at Planck scale
so this ratio decreases rapidly as T grows
—> In order to have non zero radius of convergence, we need to

have 1'2r—1“[{21"—1]!]_1 when T — 0 (at least)

—> Competing effects in r: polynomial decrease vs factorial blowup
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FIRST ANALYSIS 11

Example: polynomial dispersion relation:
s The sum is truncated: No convergence issiies!
The force is defined for short L.

BUT might show new behaviour close to kp]
s Two different cases:

: - = .
i. The v, areof order [(21—1)'|" = polynomial decrease
of (L) = No measureable effects

ii. There is at least one Var-1 which is of order 1 and comes with a
high power so that the factorial dominates = measureable effects!

But T has to be of order L.}/L.
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REGULARIZATION

In any case, the result is independent of the choice of cutoff function

Choose anv Yy, such that

i. Regularizes the sum: ~ Z (€ )y lf(&,)]<x

ii. It is a cutoff function:

- YC{'

i

1 when x<«1
.y = 0 when x>1

« y€C* Im, _,y.=1
—» Fuler-Maclaurin can be used

& full divergent series recovered as (o«— 0)
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EXAMPLES

Concrete examples of dispersion relations

i. Exponential ii. Polynomial

usual-linear
usual-linear

s Very fast convergence above the = Fast convergence above Lp]

Planck length « Well defined ar all distances,
s Finite radius of convergence but new behaviour at cutoff

—> suggests minimal length scale  scale

r_‘.l
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INTEGRAL KERNEL |

From a funcrional analysis point of view:

K :[dispersionrelations}— | Casimir forces|

f(k)-»F(L)
k 1 2r-1 er—l
Kt ¥ (21 | 2 _ =
ZWLZ{' F(2r—1) T o ) )

We have K explicitely!

—> Encodes all information in a straightforward way!

We find an integral kernel representation:

k? ol _
K[fI(L)=—2%R | i""f(ik)(1-kA)e ™ "d«k

T
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EXAMPLES

Concrete examples of dispersion relations

i. Exponential ii. Polynomial

usual-linear
usual-linear

s Very fast convergence above the = Fast convergence above L.

pl
Planck length « Well defined at all distances,
s Finite radius of convergence but new behaviour at cutoff

—> suggests minimal length scale  scale

r-Jl
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INTEGRAL KERNEL |

From a functional analysis point of view:

K :[dispersionrelations |— | Casimir forces

f(k)-F(L)
kl 1 2r-1 y § |
| - (—1)(21—1)| —— (2 _ k=0
ZTTLZ{ ) (AT }ka]L C | r}dk'“‘l{ }

We have K explicitely!

—> Encodes all information in a straightforward way!

We find an integral kernel representation:

k2.
K[f](L)=—=%_

14

; iV F(ik)(1—kA)e ™ Ydk
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INTEGRAL KERNEL 11

« Neglecting CT(2T), this is exact as soon as the integral converges

= Essentially the Laplace transform of the Wick rotated disp. relation

s Downsides:

i. Involves analvtic continuation into the complex plane

ii. Not very intuitive

Solution: It suffices to write:

f(x)=xg(x?)

Then:

Kg{—;{z)(l—;{;l}e “Ydk

0
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INTEGRAL KERNEL 111

This expression is:

e Much more convenient: analvtic continuation in the negative reals only

e« This can be written as an exact Laplace transform :

k.l d | pn - |
K[f]{Lr———-lJr‘l—dJ-JOxg{ k- )e “'dk

= : : : : : 2\ . , 2
(Note: Analytic continution is unique: (X~ )determines g(—Xx")

All information about the force already encoded in the physical part

of the dispersion relation)
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INTEGRAL KERNEL 11

« Neglecting CT(2T), this is exact as soon as the integral converges

« Essentially the Laplace transform of the Wick rotated disp. relation

s Downsides:

i. Involves analvtic continuation into the complex plane

ii. Not very intuitive

Solution: It suffices to write:

f(x)=xg(x?)

Then:
k
K[f(L)=—X

; kg(—k’)(1—kA)e ™ Vd«k
-
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INTEGRAL KERNEL 111

This expression is:

e« Much imore convenient: analvtic continuation in the negative reals only

« This can be written as an exact Laplace transform:

k.| d | = b |
k- P] : _{‘_2- Kk A
K[f]{L}——TT __1+‘1_di‘1_‘| ,kg(—«k")e dk

T . . - ox ; 2 ‘ : ’
(Note: Analytic continution is unique: (X~ )determines g(—Xx")

All information about the force already encoded in the physical part

of the dispersion relation)
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VNV/IR COUPLING |

Properties of the transformation K :

= As a Laplace transform: supresses heavily the large K .

s The kernel as a function of K :

i. Its integral vanishes:
E (L) depends only on the

energy difference

1
ii. Changes sien at K=——
8 8 1.

—> short wavelengths tend to

cancel out long ones.

iii. As L. grows, we probe the

long wavelengths
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INTEGRAL KERNEL 111

This expression is:

« Much imore convenient: analyvtic continuation in the negative reals only

« This can be written as an exact Laplace transform:

= ]

k.l . :
K[f|(L)=—2 1+J_Ldi J,xkg(—k")e ™ "dk

T | A

{ T . - b - = | _}' ] . 2
(Note: Analytic continution is unique: (X~ )determines g(—Xx")

All information about the force already encoded in the physical part

of the dispersion relation)
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VNV/IR COUPLING |

Properties of the transformation K :

s As a Laplace transform: supresses heavily the large Kk .

s The kernel as a function of K :

i. Its integral vanishes:
E (L) depends only on the

energy difference

L
21

ii. Changes sign at K=

—> short wavelengths tend to

cancel out long ones.

iii. As L. grows, we probe the

long wavelengths
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INTEGRAL KERNEL 111

This expression is:

s Much more convenient: analvtic continuation in the negative reals only

« This can be written as an exact Laplace transform:

k| d |- alial
B __ | L2y kA |
K[f]{L!——TT '_1+'1_d*.-1_5‘| ,kg(—«k")e dKI

. : : . . ; 2 : - 2
(Note: Analytic continution is unique: (X~ )determines g(—Xx")

All information about the force already encoded in the physical part

of the dispersion relation)
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INTEGRAL KERNEL I1

« Neglecting C(2T), this is exact as soon as the integral converges

» Essentially the Laplace transform of the Wick rotated disp. relation

s Downsides:

i. Involves analytic continuation into the complex plane

ii. Not very intuitive

Solution: It suffices ro write:

f(x)=xg(x?)

Then:
k
K[f(L)=—2

‘; kg(—k>)(1—kA)e' ™ dk
o
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INTEGRAL KERNEL 111

This expression is:

e Much more convenient: analvtic continuation in the negative reals only

« This can be written as an exact Laplace transform:

k_| d | = o
__ T pl| __ 8 2 x A
K[f]{L}——TT _1+‘1_d*.1__~|0hg{ e " dk

= : , : , - (2 : 2
(Note: Analytic continution is unique: (X~ )determines g(—Xx")

All information about the force already encoded in the physical part

of the dispersion relation)
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VV/IR COUPLING |

Properties of the transformation K :

= As a Laplace transform: supresses heavily the large K .

s The kernel as a function of K :

i. Its integral vanishes:
F(L)depends only on the

energy difference

.
21

ii. Changes sign at K=

—> short wavelengths tend to

cancel out long ones.

iii. As L. grows, we probe the

long wavelengths

19



X11 Applications FEdit Window Help - w =P (E7% mar. 16744

UNV/IR COUPLING 11

The analytic continuation is unique... But:

Recall: f(x)=xg(x*)

Which translates into:

s A dispersion relation essentially indistinguishable from the linear one

_— : . ; -3
s A Casimir force that stays orders of magnitude awav from the L. = at

any chosen scale

—> Exireme case: violation of decoupling!
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VUNV/IR COUPLING 111

Example:
Let us choose g to be a sharply peaked gaussian in the small negative K
« The dispersion relation is essentially the linear one
» The force function shows
i. a slightly different behaviour at short k

ii. a very strong effect on the long distance: orders of magnitude!

Gaussian corrected
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VUNV/IR COUPLING IV

Final point, truncation effects:

« The force might depend heavily on the power at which one decides to
cut a series —» both UV and IR modifications!

« ¢.2. Brandenberger & Martin:

f{X}:\XZ—aXJ‘JrﬁXE’

Truncated
at 0(22) /

¥ o N S O e e i T O O e e T o e
04110841 0z 04 08 el 4 7
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UNV/IR COUPLING

—> Classification of the possible effects w.r.t. UV/IR coupling

« Mathematically: dispersion relation determines Casimir force through

i. Analytic continuation
ii. Operator K

« However: can build functions with arbitrary UV/IR coupling!

What does that mean?
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CONCLUSION
Using suitable q, could fit ANY experimental data to arbitrary (but not

complete) precision.

Theory has to come first!

Quantumn gravity theory predicis dispersion relation — (operator K)

uniquely predicts Cas. force =~ —=> compare to experiment

Outlook

e Carry out analogous program for actual QED
e The same work should be done for the other cases:

inflation in particular, black hole evaporation, GRB
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VNV/IR COUPLING WV

—> Classification of the possible effects w.r.t. UV/IR coupling

« Mathematically: dispersion relation determines Casimir force through

i. Analytic continuation
ii. Operaror K

« However: can build functions with arbitrary UV/IR coupling!

What does that mean?
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CONCLUSION
Using suitable g, could fit ANY experimental data to arbitrary (but not

complete) precision.
Theory has to come first!

Quantumn gravity theory predicis dispersion relation —> (operator K)

uniquely predicts Cas. force @~ =) compare to experiment

Outlook

e Carry out analogous program for actual QED
e The same work should be done for the other cases:

inflation in particular, black hole evaporation, GRB
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VNV/IR COUPLING WV

—> Classification of the possible effects w.r.t. UV/IR coupling

« Mathematically: dispersion relation determines Casimir force through

i. Analytic continuation
ii. Operator K

« However: can build functions with arbitrary UV/IR coupling!

What does that mean?
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VNV/IR COUPLING IV

Final point, truncation effects:

s The force might depend heavily on the power at which one decides to
cut a series —» both UV and IR modifications!

= ¢.2. Brandenberger & Martin:

f{X}:xXZ—ﬁXJ‘JrﬁXE’

Truncated -
at 0(22) f
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VUNV/IR COUPLING 1V

Final point, truncation effects:

s The force might depend heavily on the power at which one decides to
cut a series —» both UV and IR modifications!

« ¢.g. Brandenberger & Martin:

f{x}zxxz—axjﬁrﬁxﬁ

Truncated
at 0(22) ._

Iz
04110041
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VUWV/IR COUPLING 11

The analytic continuation is unique... But:

Recall: f(xX)=xg| 9

Which translates into:

= A dispersion relation essentially indistinguishable from the linear one

el : . : -
s A Casimir force that stays orders of inagnitude away from the L. = at

any chosen scale

—> Extreme case: violation of decoupling!
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