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Arithmetic of Calabi-Yau Manifolds

‘ F
\ |,

.......

A\IMS:

® To explain the fact that the periods of a Calabi—Yau manifold in terms of which we com-
pute many observables of the effective low energy limit of string theory encode important

arithmetic information about the manifold.

e To speculate about the role of ‘quantum corrections’ and mirror symmetry.
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Periods of the Quintic l

Consider for definiteness, the one parameter family of quintics in

U : Plz.v) = S z° Y

M has h'*' 1 and /" 101.

In this simple case there is a simple relation between M and its mirror

W = M/T
k
E & By oy Eao By e} ¥ (6 By £ ey " " Egs & " Hgy & ° 2
where (" = 1land ) . n; = 1 mod 5.
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Parametrise the deformations of the complex structure by the periods of the holomorphic

(3. 0)-form {)

A= F 1, ;€ H.(M

M has h*" = 101 and 204 = 2x 100 + 4 periods while VV has h~* = 1 and 4 periods.

These periods are (generalised) hypergeometric functions and satisfv a differential equa-

tion of order b;. In the case of the principal periods
L w(A) 0: X\
where

£ il 5A HL’;:-"{ 1) . with v/ A =
_ d )\

The operator L is of fourth order and A = 0 is a regular singular point with all four

indices equal to zero. Thus the solutions near the origin are asvmptotic to

loeX. log“ . log” A
1. logA., log”A. log" A .

]
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The solution that has no logarithm is the series

more generally the solutions are of the form
oralA) = FulA)
1(A) = Fo(A) logA + f(A)
7a(A) = fo(A)log* A + 2 () log\ + fo(A
o3 (A) Fo(A) log” A + 3f1(A) log" A + 3f5(A) logA + fi(A

where the f.(A) are power series. These series will enter into our calculation of the
number of rational points of M. Recall that these solutions may be found by the method

of Frobenius. That is by seeking solutions of the form

(A €) = Y @m(€) A™ to the equation L =w(A.g) = ¢ X°
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Integral Series I

We know what the integers mean for the g-expansion of the vukawa coupling:

- . ] i :
st [ {11 £
Yttt | S : 5+ )
» oo, (Y)3(1 — dt i 3.
where in this expression
L o (A
q exp(2met) and
27T Top( A

Integers however appear also in the mirror map

A g+ | 54 111: - 1?5!1;}1};1;.' L 313195944

-

657313805125 ¢~ + 153111395957775

3815672803541261385 g

. = 9970002717950633142112 g
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Integral Series I

We know what the integers mean for the g-expansion of the vukawa coupling:

where in this expression

L (A
/ . P ‘
q exp(2mil) and 1 i
2 ol A
Integers however appear also in the mirror map
A g+154q~ + 179139 q" + 313195944 q°
||'FIT-:'.;[-1I:‘”-_'§:-'I -I"Jrl - 15311 -_.';"*-rr"‘.r.-‘-."ﬂ;i (]

I8156T2803541261385 g

| 9970002717955633142112q + ... .
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Rational Points I

Now ask a very strange (for a physicist) question:

For the quintic M

P(x,v) = Y x° — 59 T, T,T3T42

how many solutions of the equation F(x. 1) () are there with integer r; and how

does this number vary with 1»?

Since the ; are coordinates in a projective space and we are free to multiply the coor-
dinates by a common scale there is no difference between seeking an integral solution
and a rational solution, r; & . This formulation is better because _ is a field but it is
still very hard to answer in general. An easier but still interesting question is how many

solutions are there over a finite field.
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Field Theory While Standing on One Leg

A field - is a set on which + and < are defined and have the usual associative and
distributive properties. ' is an abelian group with respect to addition and = {0}

is an abelian group with respect to multiplication.

Finite fields are uniquely classified by the number of elements which is p°" for some

prime p and integer /V.

k
The simplest finite field is * , the set of integers mod p
I 0 | 2 3 4 5 &
I 1 4 5 2 3 6
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An old result, going back to Fermat, is a’ @ write this

it follows that

jI.r.i — y

There is another elementary fact that is also useful. Consider

YN = V(e T -

It follows now that

if p — 1 does not divid

r

1, if p — 1 divides 7
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A Zero'th Order Result I

Take now = & and 5¢ € I, (p # 5) and let

This number can be computed mod p with relative ease

L \ 1 Flx. )P

il

[' 0. if p — 1 does not divide n

Expand the power and use the fact that )~ =7 =

l. —1. if p — 1divides nn .
The result is that
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p-Adic Numbers I

1/ is a definite number so we may seek to compute it exactly. We expand

II.-.r." — J'll.'\ I .Ir)I'-.II ;J 1 JI;'-,__ _I"_ | I!." . ;_,
with 0 < v, < p — 1 and evaluate mod p°, mod p°, and so on.
This leads naturally into p-adic analysis. Given an r we write
m T
J == = i)
1 3

where 1, 1y, and p have no common factor. The p-adic norm of r is defined to be

il — 1“ ."_ Ui, - |

and is a norm, that is it has the properties:
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Counting the Number of Points Exactly I

Denote by 1/, the number of solutions to the equation

s ' fo(A) 4 - | PFI(A

This expression holds for 5 [ p l. In the expression

A\ = Teich(\) = limm AP and Pf.(A

* o
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The solution that has no logarithm is the series

more generally the solutions are of the form
oralA) = fulA)
=.(A) = fo(A)log + Fi(N)
:-_a-'._' f\.' — j...|. z\| I_“_, r\ 1 ...:.ilr- /\1..' l":_'.'\ 1 .FI_ ‘\
k
w3 (A) fo(A)log" A + 3f1(A) log A + 3f3(A) logA + f3(A

where the [, (A) are power series. These series will enter into our calculation of the
number of rational points of M. Recall that these solutions may be found by the method

of Frobenius. That is by seeking solutions of the form

Z(Ag) = Y am(e) \™"° totheequation L =(\.2) = =£'A°
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Counting the Number of Points Exactly l

Denote by 1/, the number of solutions to the equation /(. v ) over _

—
Eed
-
-~
-

This expression holds for 5 [ p l. In the expression

A\ = Teich(\) = lim NP and Pf,(A) = ) I. \

* b
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Now, as we have said, the number of rational points is determined by the periods and there
are b’ 2h*" + 2 of these. The Hodge number /.~ counts the number of parameters
on which the complex structure depends and, in simple cases, this corresponds to the

number of ways of deforming the defining polynomial

j}|-i'. C " Lo ok W r g

The directions in which F (. ¢) can be deformed correspond to the monomials
considered subject to the ideal (JF/dx;). A special role is plaved by fundamental
monomial

() L1 LT3 4Ts

e i =

which is related by mirror symmetry to the Kihler form of the mirror.
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Counting the Number of Points Exactly |

Denote by 7, the number of solutions to the equation /' (x, v ) over _
.“ ] )
/ fo(A) ‘ f1 (A \
1 — p W —
[ p 1 /
]I‘ o“ ".__ L"I
3!\ 1 p ' \ 1 r

This expression holds for 5 [ p l. In the expression

A\ = Teich(\) = lim AP and Pfy(A) = Y \

-
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Now, as we have said, the number of rational points is determined by the periods and there
are b° = 2h~" + 2 of these. The Hodge number /».~" counts the number of parameters
on which the complex structure depends and, in simple cases, this corresponds to the

number of ways of deforming the defining polynomial

I)l-i'. C " Cal . il | Ly alks

The directions in which F (. ¢) can be deformed correspond to the monomials

considered subject to the ideal (JF/dx;). A special role is plaved by fundamental
monomial
() T1TLrT3 L 4T

which is related by mirror symmetry to the Kihler form of the mirror.
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Return now to our special one parameter family of polynomials

Plx. ) N\ N

M has 2h** (M) + 2 = 204 = 2 X 100 + 4 periods while WV has 2h*' (W) + 2 = 4.

() » ()- . )

L e T

This leads to 1 fourth order differential operator L and 100 second order operators L

There are tenth order monomials that are not included in the above scheme and which

require special attention. The generatorskf the ideal are

L, = W T3, T; & cyclie.

Thus
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We can also perform the sum in our expression for the number of points to give

L/ N 3 A"

with coefhicients

&

by = lamn e = _' G:,.. G
R=00 @ _ysi iz Lo
When we include the contributions of the other periods for the case 5 p | we find
vl = -1+ Y ()" A" Gsn [ 6
where & = (p — 1)/5. The contribution of v = (0,0.,0,0,0) gives our previous

expression. The quintic ©U's correspond to the other 200 periods and give the extra terms
that arise when 5 p |. These terms have a natural interpretation as the exceptional
divisors of the mirror manifold. The monomial of degree 10 contributes only for the

Prsz: ¢8tifold when V" = 1. Page 20/66
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Counting the Number of Points Exactly I

Denote by 1/, the number of solutions to the equation (. v ) over _
- . p (e ] p =
L/ -I;I' lll'l.n’ 1 ] : r i lb\ i I A
l —p ' st \1—p '
| p I '
III; .'I. -,IL L"I
3t \1—p Ny —y

This expression holds for 5 [ p l. In the expression

\ = Teich(\) = lim AP and "Tolk) = N — A’
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We can also perform the sum in our expression for the number of points to give

N B AT

with coefficients

Oyia

). = lwmn . = — | G-, G
n—oo g -
When we include the contributions of the other periods for the case 5 p | we find
pr; = P—1°+) ) (-)"A" G || G
where & = (p — 1)/5. The contribution of v = (0,0,0,0,0) gives our previous

expression. The quintic ©''s correspond to the other 200 periods and give the extra terms
that arise when 5| p . These terms have a natural interpretation as the exceptional
divisors of the mirror manifold. The monomial of degree 10 contributes only for the
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Rational Points over [ : Dwork’s Character

Let

o A

be a non-trivial additive (®O(x + y) = O(x)O(y)) character of order p (8(x)” = 1).

(This is a p-adic version of a character of a commutative group G — _.) Thus

\\ Oy Plr. R = p ol P

II‘Ilrf.‘ — \-‘ '\-‘ (=} .}.}j

Dwork constructed such character in terms of Gauss sums

e N O(x) Teich’

and in terms of these one can expand the character in the form

() = - N _ Teich"™ (2
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We can also perform the sum in our expression for the number of points to give

> T‘ j 1

with coefficients

(1

e = l2mn s = )™ G5, G
R—400 @it ot nii
When we include the contributions of the other periods for the case 5 p | we find
P = =1+ 3 (=1)™ A™ Gamn [] G—mes
where & = (p — 1)/5. The contribution of v = (0,0,0,0,0) gives our previous

expression. The quintic ©'’s correspond to the other 200 periods and give the extra terms
that arise when 5| p . These terms have a natural interpretation as the exceptional
divisors of the mirror manifold. The monomial of degree 10 contributes only for the

R
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Rational Points over 7 : Dwork’'s Character I

Let

o
be a non-trivial additive (O(x + y) = O(x)O(y)) character of order p (68(x)” = 1).
(This is a p-adic version of a character of a commutative group G — _.) Thus

\ {'H _Uf}f.i'.. U} — f"'{" I] ol-u U7

l:jl,r).‘ — ‘.\-‘ \_‘ (=) ':'J{}

Dwork constructed such character in terms of Gauss sums

G. N ©(x) Teich’

P

i

and in terms of these one can expand the character in the form

O(xr) = -~ g

J
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Incorporating these considerations

where the (3; ,,, are given in terms of the Gauss sums or, equivalently, in terms of p-adic

I' functions.
e For5 /(p — 1) we only have a contribution from v . 0, 0\

® The coefficients 35 ,,, are closely related to the coefficients in the series expansions of the

periods around the regular singular point A = 0.

Explicitly to order p:
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The tenth order polynomial v = (4, 3, 2, 1, 0), corresponds to a “period™ that is zero
everywhere, except when ) = 1. For these values of v’ the variety is not smooth
anymore: it has 125 isolated singularities that are double points (“*conifold™ singularities).
The calcualtion for the number of rational points makes sense even for these singular

cases. A little simplification reveals the contribution to v, of ¥ = (4,3, 2.1.0) as

24p*(p — 1)8(Teich(vr)’ — 1
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The tenth order polynomial v = (4, 3, 2, 1, 0), corresponds to a “period™ that is zero
everywhere, except when vv° = 1. For these values of v the variety is not smooth
anymore: it has 125 isolated singularities that are double points (“conifold™ singularities).

The calcualtion for the number of rational points makes sense even for these singular

cases. A little simplification reveals the contribution to v, of ¥ = (4.3, 2.1.0) as
ZI;AJ ¢ s LYo(T erch (v - ]
N
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[Incorporating these considerations

»

where the (3; ,,, are given in terms of the Gauss sums or, equivalently, in terms of p-adic

I' functions.
e For5 f(p — 1) we only have a contribution from v’

® The coefficients (35 ,,, are closely related to the coefficients in the series expansions of the

periods around the regular singular point A = 0.

Explicitly to order p:
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. P
Pirsa: 04110028

Rational Points over 7 : Dwork’'s Character

Let

O :

be a non-trivial additive (O(x + y) = O(x)O(y)) character nl'.turdur p (6(x)”

(This is a p-adic version of a character of a commutative group G — _.) Thus

\ {'}f_fjj'}l’.f'..-'.'l:l — f'f{"'lt!] Le U/

s T . =) .'.fj

B

J-‘;J'\ W— ‘..\ J

Dwork constructed such character in terms of Gauss sums

" ad N ©(x) Teich'

il

and in terms of these one can expand the character in the form

; p—2
O(xr) = N G_.. Teich”

l —l

= Bk
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[ncorporating these considerations

where the 3; ,,, are given in terms of the Gauss sums or, equivalently, in terms of p-adic

I' functions.

e For5 J/(p — 1) we only have a contribution from v

h
® The coefficients (35 ,,, are closely related to the coefficients in the series expansions of the

periods around the regular singular point A = 0.

Explicitly to order p:
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The tenth order polynomial v = (4, 3, 2, 1, 0), corresponds to a “period™ that is zero
everywhere, except when vv° = 1. For these values of v the variety is not smooth
anymore: it has 125 isolated singularities that are double points (“conifold™ singularities).

The calcualtion for the number of rational points makes sense even for these singular

cases. A little simplification reveals the contribution to v, of ¥ = (4.3, 2.1.0) as
:l‘fii'_;; - 1o(T erch(v — ]
h
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The Zeta-Function

Consider now N_.( A\ ' which are the numbers of projective solutions of P

over | and form

e T"\I — *--‘.:I \;‘-_-
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The Weil Conjectures I

e Rationality (Dwork): ((7T) is a rational function of T

e [unctional equation (Groethendieck):

H.;".T| = P R'f"\._lr
)

where Y is the Euler characteristic and d is the real dimension of M.

® Riemann Hypothesis (Deligne):
P(IYA(T) ... Py i
ol ) P(T) ... Pagld

L,T.l—

with F; (1) a polynomial with coefficients in Z of degree b,. Furthermore

P (T —I]II -a; T), |aiij| = p"° and By(T) =1—-T ., Pu(T) = 1—p°T.
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The (-Function I

We now work over . and let /V, (1) denote the number of projective solutions to
F(x.1) = 0. The (-function is defined by the expression
= N, ()T
E I ) = exp |: \
We are led to decompose /V, into a sum of contributions Ny,og+)> ., N

In all cases, apart from the conifold, R, is a quartic

He = 14+ap1 4 f:”!:T" - Ay P e p |
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The Weil Conjectures I

e Rationality (Dwork): ((7') is a rational function of T

e lunctional equation (Groethendieck):
[ 1 IX/2 X AT
: | = +p ™° ,
- 3 i | -
peT

where Y is the Euler characteristic and d is the real dimension of M.

® Riemann Hypothesis (Deligne):
PP ) .. - 3 I
Fol D YEAE) .. Faald

H.,.I—.l—

with F; (1) a polynomial with coefficients in Z of degree b;. Furthermore

| Wk _]l|[ -a;; T), |aii| =p/" and Fy(T) =1-T, Pou(T) = 1
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The (-Function I

We now work over - and let /V, (1) denote the number of projective solutions to
F(x.1) = 0. The (-function is defined by the expression
= DV
4 T ) = exp fl \
We are led to decompos® /V, into a sum of contributions Nyo+)> ., N

Ry(T, V) T]., R.(T.
1 — T)(1 — pT)(1 — p*T)(1 — p°T

1’"-:‘ T U
— T)(1 — pT)'""' (1 — p*T | — p*T

In all cases, apart from the conifold, R, is a quartic

Ry = 14+ayT 4 ':’il_liJT_l - g P I - p =
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The Euler Curves I

Classical analvsis gives an expression for the hypergeometric functions in terms of Euler’s
; ! | ¥i

integral which is of the form

drxx """ (1 — x) (1 —
If we think of Euler’s integral as | ~— then we are led to curves
E a() : Yy r (1 < 5 ol
k

0 )
(4.1.0.0.0) 2 -

(3. 2.0.0., 0) ] { !

- J

L=
(3,1,1,0,0) 2 ! |
l.-r:.: x ) Samd O £ .

12, 2,1,0.0 { }
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The (-Function I

We now work over I . and let /N, (1) denote the number of projective solutions to
F(x.1) = 0. The (-function is defined by the expression
e ISR
(T ) = exp | )
We are led to decompose /V, into a sum of contributions Nyo+)> ., N
A | Ry(T, ¥) [[, Ro(T.
W\ A r.. ) =
I')(1 pT) (1 — p*T)(1 p*T
(T, ¥
- YV —I + Y ) " '
- 1T)(1 — p1)'''(1 — p*T | — p*T

In all cases, apart from the conifold, K, is a quartic

)r?.. = 1 4 H'.,T . I{J'.|_|“T'I - g P T - P T
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The Conifold I

For the conifold v° | the ( -function seems to be especially simple

( 1 '-'j‘T;' i T W p T“ : T
(T, 1) = - { k = | L
1 — T)(1 —;if.|] —;;—'f, | ____J,JJ_’_ _ :,_r ;

[

wheree = | ~ | = =1 and a, i1s the p-th coefhicient in the g-expansion of the eigen-
form, g, found by Schoen; it is the unique cusp form of weight 4 for the group I',(25).
k

g = rlur;“.; .'Iln'l-':fI; - 3!;{1;';’!} r;“-"n t EII!];H;I‘.I} g } + 251 Jgqymqg + '_".'.,' q
= q :::"' A .':;' _'a_lr' A Tr_j' | l.’rl,r' ].';.;If - j'_f.-_; f.'.;_; 19qg -
28 q * 4 6 g *+41q"° 91 g 2T a™ J0q +42q- 13 g=°
162 g~ 105 ¢g** — 28q¢™® — 35q¢" — 42qg™ + 160g™ + 42 g
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The tenth order polynomial v = (4, 3, 2, 1, 0), corresponds to a “period™ that is zero
everywhere, except when ©> = 1. For these values of v’ the variety is not smooth
anymore: it has 125 isolated singularities that are double points (“conifold™ singularities).
The calcualtion for the number of rational points makes sense even for these singular

cases. A little simplification reveals the contribution to v, of © 4,3,2,1,0) as

_nt

:1!.‘_: _||” — |;r"'.iT; .!.r ,LI 1/ ! —
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The Conifold I

For the conifold ° | the ( -function seems to be especially simple
[ 1] i L]‘JT} (1 - {1, T 1 5” T_I _.:'-'T
*-u'T~l — e A5 =t : p=1
1 — T')(1 _IIJI.II —f'."_[.' | - I . AJT '
where ¢ = | | = 1 and a Xis the p-th coefficient in the g-expansion of the eigen-

form, g, found by Schoen; it is the unique cusp form of weight 4 for the group I',(25).

g=nlqg ) nlg) +5n(g)nlqg”)+ 20n(qg)nlq” ) + 25nlg)nlqg” = 2omM g
i rif (] -:],r -u; i r_j' iirr"_ ]'alrl,' s [ .5 i B
j\.rlf HfIJ ;] .rjl 1¥| {I! }j.r 45 (] .: 3 19
162 g 1||.'“a1,r‘ri 28 rf"" 19 g 12 g 60 g~ 12
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125 S*’s are blown down but only 101 are independent so 24 4-cycles are created.

S5
T
24 —n 24>
—
4-chain 4-cycle
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The Conifold I

For the conifold ° | the ( -function seems to be especially simple

(1—epT)(1 —a, T+ p’T*)(1 — pT
21 = — _ — _ p =1
1-T)1—p1)1—p1T)1 — p*T) (] p-1)-

wheree = | ~ | = =1 and a, i1s the p-th coefhcient in the g-expansion of the eigen-

form, g, found by Schoen; it is the unique cusp form of weight 4 for the group I',(25).

g =n(q’) [n(q)" +5n(q)'n(g”) +20n(q)" n(qg” )" + 25n(q)n(q™)" + 25n(q"
_. : . ) 3
=q+qQ +7q iq +iq +06g 1oq + 22 q i3 g 19qg
28 @ W 6 g * 1+ 4] q i S qg' +22q° 35q° +42q°
162 g> — 105 g™ — 28 q™® — 35¢* — 42q™ + 160g™ + 42
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H-=

—

4-chain 4-cycle
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~Now we resolve 125 nodes with

100

3-cycle

Pirsa: 04110028

's. but there are 100 relations so we destrov 100 3-cvcles.

S ——
— 100 3«

‘_.,...-""

3-chain
LS
[ = i & F
n'T)12 2 I
I |

pd")* T2 I
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The ¢(-Function and Mirror Symmetry I

We now work over - and let [V,.(1) denote the number of projective solutions to

P(x,v) = 0.
f e N YE™
C(T,vY) = exp ¥y |
- |

As defined the ( -function does not respect mirror symmetry

Numerator of deg. 2h” + 2 depending on the cpx. structure of M

C(T) = _ . =
Denominator of deg. 2h"" + 2
Explicitly for the quintic we have
= I__ _ ”.. I, v) th}_]_ldjr | S 7). ;"FJ-J-_: J I
‘miL,.W) = — = _ :
(1—-1)1—p1)1—p1)(1 — p*l
R
Ro(T, v

Page 47/66
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The ¢(-Function and Mirror Symmetry I

We now work over - and let [V,.(1) denote the number of projective solutions to

Plz. v) = 0.
(e~ INR(P)T™
C(T,vY) = exp (T‘ |

As defined the ( -function does not respect mirror symmetry

: - - 21 2 : .
Numerator of deg. 22~ + 2 depending on the cpx. siructure of /M

C(T) = : :
Denominator of deg. 2h"" + 2
Explicitly for the quintic we have
= T _ H.. T f."h} VL T . U7 g'rf-.: J :"_
(mL, W) = = = _ :
(1—-—1)1—p1)(1—pT)(1—p*l
R
Ro(T, v

Page 48/66
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The 5-adic Limit I

The desired relations are true in the 5-adic limit. More precisely for all p and v

Ry(T,¢) = (1 — T)(1 — pT)(1 — p*T)(1 — p’T) + O(5°
-irf_l -'( ) i’.'r_; J W) | p 7 iy LN 1 O
so that ]
Cw = — + 0(5)
(A

Compare this with the quantum corrections to the classical Yukawa coupling which we

write in the form

Y 1 &= n.k*q" A
= = 14-9 — = 1+ O(5’
Yeee e 1 — 9 A

. i r -3 3 P
since Lian and Yau have shown that 5°|n k" for each k.
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The ¢(-Function and Mirror Symmetry I

We now work over . and let [V,.(1’) denote the number of projective solutions to

Plz. v) =0

e LYAPE”
C(T,vy) = exp (T‘ |

As defined the ( -function does not respect mirror symmetry

Numerator of deg. 2h*" + 2 depending on the cpx. structure of M

Er) =

Denominator of deg. 2h"" + 2
Explicitly for the quintic we have

!rrh T« "‘:1";]"‘,"-’ T :Il-"-l J T .

CaelT ) = — = _
- (1-1)Y1—p1)(1—pT)(1—0p
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The 5-adic Limit I

The desired relations are true in the 5-adic limit. More precisely for all p and v

R,(T, ) = (1 — T)(1 — pT)(1 — p*T)(1 — p°T) + O (51
ir"}_! L', YP)° fi,.r__; 1.9 | '__.‘_' 1 (5
so that ]
Cw = — + 05
G

Compare this with the quantum corrections to the classical Yukawa coupling which we

write in the form

_U”-r 1 e f?;-;l'.]ffi'l : :
oy 2 = T‘ ke = LJ 3
Yeet P k=0 1—gq -

. . . =3 o P
since Lian and Yau have shown that 5°|n k" for each k.
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The ¢-Function and Mirror Symmetry I

We now work over - and let [V,.(1) denote the number of projective solutions to

Pz, v) = 0.

f OO "\.'.P[ r) T \
C(T,vy) = exp (E |
= - |

As defined the (-function does not respect mirror symmetry

: . - 21 2 ; -
Numerator of deg. 27~ + 2 depending on the cpx. structure of M

C(T) = _ —
Denominator of deg. 2h"" + 2
Explicitly for the quintic we have®
- T ) Ro(T,v) Ra(pT g I
‘mlL.w) = =
(1— 1)1 —pl)(1 —p“1 - p1

) | Fo(T, v
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The 5-adic Limit I

The desired relations are true in the 5-adic limit. More precisely for all p and ©°

Bo(I'. V) =(1—-T)Y1 —pT)Y1—pT)1—pT)+ O(5
i’ oalld Hgll. v) ] p J | (5
so that 1
Cw = + O(57)
G

Compare this with the quantum corrections to the classical Yukawa coupling which we

write in the form

Yite <~ 7 L"iq“;" : -
— = 1+- Y — = 1+ O(5’
Yttt S e 2 — 9

= : . - 3 P
since Lian and Yau have shown that 5°|n k" for each k.
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The ¢(-Function and Mirror Symmetry I

We now work over - and let [V,.(1) denote the number of projective solutions to

Plz, ) = 0.

f o N IE™
C(T,vY) = exp (S |
- |

r=I1
As defined the ( -function does not respect mirror symmetry

. . - 71 . - -
Numerator of deg. 2h*" + 2 d&ending on the cpx. structure of M

C(T) =

Denominator of deg. 2h"" + 2

Explicitly for the quintic we have

= I__ _ J!rl-.“ T-. L’ 1’; ]_ij,l'J T s U g'rl-‘-: J :,I'_

Camli,YW) = — = i ==

i (1—1)1—p1)1—pT)1— p*l
R.(T. v
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The ¢(-Function and Mirror Symmetry I

We now work over I, and let /N, (1) denote the number of projective solutions to

Pz, v) = 0.
(22 N_(H)T™
C(T,v) = exp Yy |
b= 5 |

As defined the ( -function does not respect mirror symmetry

: . - 21 2 ; .
Numerator of deg. 27~ + 2 depending on the cpx. structure of /M

Pirsa: 04110028

(L) = : :
Denominator of deg. 2h"" + 2
Explicitly for the quintic we have
- Ro(T',v) RA(p°T?, K I
cmiL. W) = = .
1—I)1 -l —p12 - p1
) | Ry(T.
(-.'MJ{I- "-*"} = (1 — fr (1 — ;,I_ B Y & — I Page 55/66



The Conifold I

For the conifold 1" = 1 the (-function seems to be especially simple

| ] -r;ﬂT}rl -a, 1T 4 IHT" Z pT
1 — T)(1 — pT)(1 — p*T)(1 — p*T) (1 — p*T

where ¢ = | = =1 and a, is the p-th coefficient in the g-expansion of the eigen-

form, g, found by Schoen; it is the unique cusp form of weight 4 for the group I',(25).

.ff - fl,l||r;‘..|; ;'il'“;l! L _r}j‘lrt;!fh'fj r_fl_.' 1 :“'I.I“ffl!_'r.ll l.!‘]-' . 3 -u"I.I. rf'!".' .-!ll_ 1 -_l"rrl_ r;"
— ri," . :j: L .-r]r' -ilf . ._fj y Iif‘f' ]:ilfﬂ L 22Q J:f?-' 190
28q"” +6q"" +41q"° +91q'" +22q" — 35q¢" +424° 13 g~
lij:rjl‘_l: :ll.-;,:j:i '_?."H rf:h .':..;I_JI". _[,__' :;"x L 16 (1" ! _:_“
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125 S”’s are blown down but only 101 are independent so 24 4-cycles are created.

A
x
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4-chain

—

e

4-cycle

|
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Counting the Number of Points Exactly I

Denote by 1/, the number of solutions to the equation /(. v ) over _

—

-

r
-

This expression holds for 5 [ p l. In the expression

L3 \ = Teich(\) = lim AP and Pfy(A) = - A

* b
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We can also perform the sum in our expression for the number of points to give

[’ '\ T‘ 1 1
with coefficients
b, = 2N | — | G:,.. G
oo S .
When we include the contributions of the other periods for the case 5 p | we find

pr; = (P—1P+) Y (-)"A™G;. || G
where & = (p — 1)/5. The contribution of v = (0,0.0,0,0) gives our previous
expression. The quintic v'’s correspond to the other 200 periods and give the extra terms
that arise when 5| p . These terms have a natural interpretation as the exceptional
divisors of the mirror manifold. The monomial of degree 10 contributes only for the

Prsz: ¢Btifold when " = 1. PR




Counting the Number of Points Exactly I

Denote by 1/, the number of solutions to the equation /(. v ) over _
A
a P \ ,. : P '
Ly JolA) 4 ) E g F. (A
1l — P ' 2! L — 1 2
| | I
] \ \ O
3!\ 1 P : .

This expression holds for 5 [ p l. In the expression

Py

A = Teich(A) = lam AP and Pf,(A) = “ I. - A
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Counting the Number of Points Exactly I

Denote by 1/, the number of solutions to the equation

. P . ] !
s ' folA) 4 : | ©1.(A
L3 = Z -
| - ) 1 :
fo (A)
3!\ 1 p i i

This expression holds for 5 [ p l. In the expression

A\ = Teich(\) = limm NP and Pf.(A

* o
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Denote by

7, the number of solutions to the equation /

This expression holds for 5 |

Pirsa: 04110028

\

leich

A)

III'}

D

|

—

LTri

l. In the expression

AP

and

I Ir E

]

Counting the Number of Points Exactly I

} OVEr _
- t"l.
L ) :I. F
(N
\J.
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The solution that has no logarithm is the series

£, {‘; 5 )! \
— et
more generally the solutions are of the form
arafA) = JulAl
@i(A) = Fo(A) logA + fi(A)
a(A) = fo(A)log* A + 2F,(A) logA + fo(A

:_u- 1 r\' _fl.u _,\ | E.{'I_.I‘. . -'\ ] -i_f- | -’\ :' !.l ':.-\ B I' | 2 -'II“"- ._' jr Il""- 1 " .-.Ilk

where the [, (A) are power series. These series will enter into our calculation of the
number of rational points of M. Recall that these solutions may be found by the method

of Frobenius. That is by seeking solutions of the form

- 3\

(A E) = Y am(e) \™° totheequation £ =(\.g) = ' X°
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The solution that has no logarithm is the series

\'_.

PR

more generally the solutions are of the form

where the

number of rational points of M. Recall that these solutions may be found by the method

of Frobenius. That is by seeking solutions of the form

Pirsa: 04110028

tralA) = FJalA)

(A) = fo(A) logA + fi(A)
wa(A) = fo(A) log*A + 2f1(A) ]
s (A fo(A) log’ A + 3f,(A) log”

f:(A) are power series. These series will enter into our calculation of the

(T !)”

to the equation L =(A.s) = = A

7T
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Field Theory While Standing on One Leg I

A field - is a set on which - and x are defined and have the usual associative and

distributive properties. ' is an abelian group with respect to additionand = = {0}

is an abelian group with respect to multiplication.

Finite fields are uniquely classified by the number of elements which is p" for some

prime p and integer /V.

The simplest finite field is * , the set of integers mod p
I () l 2 3 4 -~ 6
- k »
I | 4 S 2 ) 6
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Counting the Number of Points Exactly I

Denote by v/, the number of solutions to the equation /(. v ) over _

Ly "To(A) 4 = | PfI(A) 4 'j f. (A

This expression holds for 5 [ p l. In the expression

3 S 8
A\ = Teich(\) = lim AP and Pf,(A) = I_ w5
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