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Abstract: Please Note: There is no audio for most presentations from November 18th due to technical issues. We appologize to presenters and
interested parties for this inconvenience.
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Geometry of T' - 17

Natural split-signature metric (X +£.Y +n

determines O( n. structure

Sub-bundles T  and T are maximal isotropic

Spinors for T & T* are given by S = A®*T*

Exterior derivative d generates the

[.‘\.ﬁ + £ Y + J,l] = [\ ) ] + L_xk-f,.' — LE'L =

B[ =

Page 2/41



Pirsa: 04110016

Generalized complex structures 2n., 2 —3

Definition: complex structure 7

) ."_.f
Examples: 775 = ( f;:) :

Fi

Local invariant:

e O(T=+T*) such that [ 7. 7]

= i A T : :
o T = ( _ 4], and 7 is a Poisso

T

e k. =n—

b =

n structure.

rk 7, called type of GCS.

1. O— symplectic
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Geometry of T — 17

Natural split-signature metric (X +£.Y 4+
determines O(n.n) structure
Sub-bundles T  and T are maximal isotropic
Spinors for T & T* are given by S = A®*T*

i
Exterior derivative d generates the

(X +&Y +n] =[X. Y]+ Lyxn— Ly€—
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Geometry of T - 1T°

¢ Natural split-signature metric (X +£.Y +
determines
¢ Sub-bundles T  and T are maximal isotropic
o

e Spinors for T+ T* are given by S =

e Exterior derivative d generates the

&
X +&Y tal =IX, Y] -Lyn—Es
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Generalized complex structures 2n., 2 %

Definition: complex structure 7 € O(T+T*) such that [[7.J] = 0.

= —F = — %
Local invariant:
= A & ¥ .. S A L
g = .|, and 7 is a Poisson structure.
Wodieats )
e k:=n —Ark m, called type of GCS.

compiex —n, n— 1L, <= _ L U—Ssympiectic
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Generalized complex structures

Definition: complex structure 7 € O(T =T

: _f b : /
Examples: Jj5= ( ;:-=) T, =

! T

Local invariant:

“) such that [[7. J]

_ X @ _ _
o [/ ( h),aﬂwd 7 IS a Poisson structure.

a —A

e k:=mn— 2rk 7, called type of GCS.

complex —m. n—1. ---. 1.

O— svm L3-| ectic
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Generalized complex structures 2n. 2 —3

Definition: complex structure 7 € O(T+=T*) such that [,
- _Jr :
Examples: Jj= ey Jw=

Local invariant;:

. (A =« _ :
e J = ( 1+ | and w is a Poisson structure.
o —A

n —+rk 7, called type of GCS.
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1. O— symplectic

r )
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Generalized complex structures

Definition: complex structure 7 €« O(T+=T"

* e * ;o
Examples: Jj5 = ( ;fi*) T =

! b

Local invariant;:

) such that [[7. J]

e '/ ( ek and 7 is a Poisson structure.

il
s
h,

rk 7w, called type of GCS.

b =

mplex —rey n—1, -+, 1.

00— symplectic

|
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Kahler geometry

Definition: triple (g..).w) such that

Equivalently: pair (J,w) such that (—wJ)" = —w.J

Equivalently: pair (J;.J.) such that

e NF Ey f e Er

"ll i, /
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Generalized complex structures

Definition: complex structure 7 € O(T+T

: _f % -~ .
Examples: J;= ( in:) A

\ Lad
¥

Local invariant:

“) such that [[7. 7]

= A ol : :
- — ( 1+ ] and 7 is a Poisson structure,

T
J

rk 7. called type of GCS.

b =

vpiexX —n, n— 1L, <, 1L

00— symplectic

|
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Kahler geometry

Definition: triple (g..).w) such that

Equivalently: pair (J,w) such that (—wJ)" = —wJ and —wJ > 0

Equivalently: pair (J;.J.) such that

o)l )= ) )=l )

I /
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Kahler geometry

Definition: triple (g..J.w) such that

Equivalently: pair (J,w) such that (—wJ)® =

Equivalently: pair (Jj, J.) such that

(=L
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Generalized Kahler geometry

Definition: pair (J4.Jg) of generalized complex structures

such
that
‘-:{L"TB — \__B‘..':__'Il = -.:I
Properties:
e B e 2
o type(J4) +type(Jp) { ="
‘ =n (mod 2)
e ('} = x1l—eigenspaces of G. These are complex for J4.Jp
and —+—-d

efinite. By projection, this induces a Riemannian
metric g, a 2-form b, and two Hermitian

almost complex
structures JL on the tangent bundle T
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I'heorem 1 [MG]: Algebraic equivalence (J74.7) = (J1.J_.b.g),
given by

= ]- ]_ \. f—}— I Jlr_ _{—w:‘- :‘*:l]] || l ||

ll| e T

L -ll B 2 h 1 —4—-_|._$—A—-— = f_:__ JII| | | —r",' l |
heorem 2 [MG]: Generalized Kahler structure (74..7g) is inte-

grable if and onlv if .J are integrable and

I'.f”;-_a..'_ o _{"[_I._—'-*—J— — ”fl‘ + H

Equivalently: V*J,. = 0, where V¥ = V + 15=1(db 4+ H), and
db+ H is of type (2.1) 4+ (1.2).

Gates, Hull, Rocek (1984): General target space geometry for
V = (2.2) sigma model

Kapustin: (J4.Jg) are topological twists.
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I'heorem 1 [MG]: Algebraic equivalence (J74.Jg) = (J
given by

'heorem 2 [MG]: Generalized Kadhler structure
grable if and only if .JL are integrable and

ra‘”;-_l;_ — —n‘”'. -_-..-'_JI_ — i} "{_ H

I:E‘-l'h

Equivalently: \_i.f'i — 0. where V==V £t l.__l

db+ H is of type (2,1) 4+ (1.2).

Gates, Hull, Rocek (1984): General target space

V = (2,.2) sigma model

Kapustin: (J4.Jpg) are topologica sists,

W

db + H), and

geometry for
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| Generalized Kahler} ——74.Jg commute in T =T°

§

|I

(bihermitian (2,2)! —Jy,J_ need not commute in T

Pirsa: 04110016 Page 17/41



Pirsa: 04110016

Examples of generalized Kahler

any Kahler manifold (J- =.J, b =0), type = (,
hyperKahler, where (.f'+_ J_.b.g)=(.J.wg.g) . type = (0.0)

Druﬂarv Hopf ":LII’TJCG‘: and finite covers thereof, type =(1.1)

i)

B L= S ——— R ) _"\_-' . R — P R — § &

&3 LVEEr ) \ / i | | ¥ i YT 1 3 i3y b | SOk
F UG -.--E.I- JLIT e 4 L P HOTIA dlibicanoriicdl HVISCL

even semi-simple Lie group (Jo,J_.b.g) = (Jg, Jr,0, Kill)
H = Cartan, type jumping

(N. Hitchin) moduli space of instantons on a generalized
Kahler manifold is generalized Kahler
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Hodge theory for generalized Kahler

e (74.J) commuting endomorphisms act via Spin represen-

tation on § =A™,

--r'i ”:w — @ 7 o .

."—!‘—'_- _.';'
r+s=n({mod 2)
e decomposition is orthogonal in the Born-Infeld metric (. ) on

forms depending on g+ b.
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decomposes Iinto 4

e exterior derivative d (or dg = d + H)
differentials:

rf::ﬁ+_+‘J—'+hF+-+"F_'

where the differential operators act as follows:

Up—14+41 = Up414+1

emima (dgdenel 7, ; 2 = 25
|\F_|_ —— —”_i_ r:1|1d () = ‘:;_
— classi — (2.2) SUSY algebra representat n ° )
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—n—+1.1 =1k

i~ . .
—TL. FE.

—

—g—t — “n—1 —1I
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e exterior derivative d (or dg = d + H) decomposes into 4
differentials:

where the differential operators act as follows:

Up—1g+1

P 1 A 1

|
L)
LJ

|l asSsit¢
15 pa's
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I'heorem [MG]: The H-twisted cohomology of a compact gen-
eralized Kahler manifold carries a Hodge decomposition:

H3 (M.C)

N>
L -

| | |
|ptg|<n

p+g=n(mod 2)
Corollary: A 4-dimensional generalized Kahler manifold with H =
Olﬂuitrmuefq_euenanmjhj odd, and to admit tvpe = (1.1) it
must also have b, even.

Note: In the usual Kahler case, this decomposition is not the
usual (p,q)-decomposition. It was first discovered by Michelsohn

and is called the Clifford decomposition. if (J4.Jg) = (
then

[ Fiov )
L B S

L

Jri—r—snr—s

=~ Qrs,
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where the differential operators act as follows:

f Ii'.‘r—l.r_\.f—|ﬁ—l I Lgit}

L eI 1 (deneralize . —= entities
04 = —04 and 6 —=d_
— classi | T B W Y e aspresentat
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e exterior derivative d (or dg = d + H) decompt

differentials:
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I'heorem [MG]: The H-twisted cohomology of a compact gen-
eralized Kahler manifold carries a Hodge decomposition:

H3 (M,C) = an P

1 | |
T ¥
|PTq| =N

p+qg=n(mod 2)
Corollary: A 4-dimensional generalized Kahler manifold with H =
O must have b7 even and ﬁi odd, and to admit type = (1.1) it
must also have by even.

Note: In the usual Kahler case, this decomposition is not the
usual (p,q)-decomposition. It was first discovered by Michelsohn

and is called the Clifford decomposition. if (J4.J5) = (J 7. Ju).
then

|

T T r—Sr—s {"";]'-.
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Geometric T-duality (joint with G. Cavalcanti)

e our approach: T-duality of any generalized geometry, assum-
ing invariance, but allowing flux. Based on the topological
approach of Bouwknegt, Evslin, Mathai.

e carly ideas of Minasian on the use of Spin(n.n) “bispinors”

to mirror symmetry.

e recent work of Ben-Bassat on T-duality of generalized com-

plex structures where irwariancegniﬁ relaxed to semi-flatness.
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I'heorem [MG]: The H-twisted cohomology of a compact gen-
eralized Kahler manifold carries a Hodge decomposition:

H;f(i EL) = @ HP-9.

i_,l'.J_:'_l':q'i =N

p+qg=n(mod 2)
Corollary: A 4-dimensional generalized Kahler manifold with H =
Olﬂuatrmuefq_euen;nmihj odd, and to admit type =(1.1) it
must also have b, even.

Note: In the usual Kahler case, this decomposition is not the
usual (p.q)-decomposition. It was first discovered by Michelsohn

and is called the Clifford decomposition. if (J4.75) = (
then

F T f:. %}
T R ST

F i T S & ek O"
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Geometric T-duality (Joint with G. Cavalcanti)

e our approach: T-duality of any generalized geometry, assum-

ing invariance, but allowing flux. Based on the topological
approach of Bouwknegt, Evslin, Mathai.

early ideas of Minasian on the use of Spin(n.n) “bispinors’
to mirror symmetry.

recent work of Ben-Bassat on T-duality of generalized com-
plex structures where Invariance Is relaxed to semi-flatness.
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exterior derivative d (or dg = d + H) decomposes into 4
differentials:

where the differential operators act as follows:

Up—1.4+41

_"+ =4y and & =a_.
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Geometric T-duality (joint with G. Cavalcanti)

e our approach: T-duality of any generalized geometry, assum-

ing invariance, but allowing flux. Based on the topological
approach of Bouwknegt, Evslin, Mathai.

early ideas of Minasian on the use of Spin(rn.n) “bispinors’
to mirror symmetry.

recent work of Ben-Bassat on T-duality of generalized com-
plex structures where invariance is relaxed to semi-flatness.
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First step: T-duality between principal Sil-bundles

Data:

-

7~ P —— B a principal Si-bundle
u € QL(P) a connection, with curvature du = F

#

T N

2 = QE,{P;}-{-# a NS 3-flux, [H] € H3(M. 7).

write H=uAF+h, hc QE{B},

Dual dat:
m[H] € H2(B.Z) determines a dual principal Sl-bundle P
choose a connection & on P
H=arF+h
A
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First step: T-duality between principal Sil-bundles

Data:

m: P —— B a principal Sl-bundle
u € QL(P) a connection, with curvature du = |

'

| !

H < Q3(P)S" a NS 3-flux, [H] € H3(M.TZ

write H=u A F + h, h € Q3(B).

Dual data:
T [H] € H2(B.7Z) determines a dual principal Sl-bundle B
choose a connection @ on P
H=arF+h
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Exchanging flux for topology

H B |25 o Ll - e

o)

orem [BEM]: The H-twisted K-theory of P is isomorphic to
the H hm sted K-theory of P.
canti, MG]|: Let F =u A u. The map
= T, -
F=gs0& Q|
induces an isomorphism of Courant algebroids
Tpols H" ( I's 4 "—F;f ~ \
T T B

A
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First step: T-duality between principal Sil-bundles

Data:

m: P — B a principal Si-bundle
u € QL(P) a connection, with curvature du = F

TN

CE Q3 (P)S" a NS 3-flux, [H] < H3(M.Z).

write H=u A F+ h, h e Q23(B).

Dual data:
T H] € H'Q{B,E) determines a dual principal Sl-bundle P
choose a connection 4 on P
H=a,NF+h
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Exchanging flux for topology

L
Uy
g
WL
I
O
¥
I
J
b

I'heorem [BEM]: The H-twisted K-theory of P is isomorphic to
the H-twisted K-theory of P.

O I & — . e - ¥ I
NeEOrern (adavalCarlll Vi

Gl. Let F=u A u. The map

= Jxe O {__f-_ : .l"l.

induces an isomorphism of Courant algebroids

Ip&ThH TpS1p &)
(3 ) — (25
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Transport of geometric structure

T'he theorem can be used to transport generalized geometries
from one manifold to the T-dual side.

Examples:

s

Let ¢ be a generalized metric on P. Then gscef o f5(G) iIs
a generalized metric (g +b) on P. These are known as the
Buscher rules

I

Let D be a Dirac structure on P. Then g.ce® o f5(D) is a
Dirac structure on P. Operations f*, f. defined by Weinstein.

Let 7 be a generalized complex structure on P. Then g.

el o f*(J) is a generalized complex structure J on P, with

-

type(J) = type =1. E.g. in 6 dimensions, 3 T-dualizations

are required to go from type = 3 to type = 0.

Compare with gerbe T-duality of De::rnefgi and Pantev.
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Transport of generalized Kahler structure

(Ta.Jn)— A7 0

|
!

|
iy

HS (M) IS (M)

If (J4.0) Were a Kahler 2n-manifold and
[ -dualities,

1u / Lh."va.. W .: W I
HPA T

nve could perform
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First step: T-duality between principal Sil-bundles

Data:

i

m: P —— B a principal Sl-bundle
u € QL(P) a connection, with curvature du

3

%

—,

kH = Qf}{P}f"l a NS 3-flux, [H] € H>(M.Z).

write H =u A F+h, h € Q3(B).
Dual data:

m.[H] € H2(B.Z) determines a dual principal Sl-bundle P
choose a connection @ on P

H.=unF +h
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Exchanging flux for topology

T

iy
uy
]
b

H =10 .\__h_' H — v

I'heorem [BEM]: The H-twisted K-theory of P is isomorphic to

the H-twisted K-theory of D.

Gl]: Let F=uAu. The map
F—@a.0e E :
induces an isomorphism of Courant algebroids

TpaTs \_ (ToeTh )
("o o8 — = )
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