Title: Generalized Kahler geometry and T-duality (no audio)

Date: Nov 19, 2004 02:00 PM

URL: http://pirsa.org/04110016

Abstract: Please Note: There is no audio for most presentations from November 18th due to technical issues. We appologize to presenters and

interested parties for this inconvenience.

Pirsa: 04110016 Page 1/41

Geometry of $T \oplus T^*$

- Natural split-signature metric $\langle X+\xi,Y+\eta\rangle=\frac{1}{2}(\xi(Y)+\eta(X))$ determines O(n,n) structure
- ullet Sub-bundles T and T^* are maximal isotropic
- Spinors for $T \oplus T^*$ are given by $S = \wedge^{\bullet}T^*$
- Exterior derivative d generates the Courant bracket

$$[X + \xi, Y + \eta] = [X, Y] + L_X \eta - L_Y \xi - \frac{1}{2} d(\eta(X) - \xi(Y))$$

Definition: complex structure $\mathcal{J} \in O(T \oplus T^*)$ such that $[\mathcal{J}, \mathcal{J}] = 0$.

Examples:
$$\mathcal{J}_J = \begin{pmatrix} -J & \\ & J^* \end{pmatrix}, \quad \mathcal{J}_\omega = \begin{pmatrix} & -\omega^{-1} \\ \omega & \end{pmatrix}$$

Local invariant:

- $\mathcal{J} = \begin{pmatrix} A & \pi \\ \sigma & -A^{(7)} \end{pmatrix}$, and π is a Poisson structure.
- $k := n \frac{1}{2} \text{rk } \pi$, called type of GCS.

complex $\rightarrow n$, n-1, \cdots , 1, 0— symplectic

Geometry of $T \oplus T^*$

• Natural split-signature metric $\langle X+\xi,Y+\eta\rangle=\frac{1}{2}(\xi(Y)+\eta(X))$ determines O(n,n) structure

- ullet Sub-bundles T and T^* are maximal isotropic
- Spinors for $T \oplus T^*$ are given by $S = \wedge^{\bullet}T^*$
- Exterior derivative d generates the Courant bracket

$$[X + \xi, Y + \eta] = [X, Y] + L_X \eta - L_Y \xi - \frac{1}{2} d(\eta(X) - \xi(Y))$$

Geometry of $T \oplus T^*$

- Natural split-signature metric $\langle X + \xi, Y + \eta \rangle = \frac{1}{2}(\xi(Y) + \eta(X))$ determines O(n, n) structure
- ullet Sub-bundles T and T^* are maximal isotropic
- Spinors for $T \oplus T^*$ are given by $S = \wedge^{\bullet}T^*$
- Exterior derivative d generates the Courant bracket

$$[X + \xi, Y + \eta] = [X, Y] + L_X \eta - L_Y \xi - \frac{1}{2} d(\eta(X) - \xi(Y))$$

Definition: complex structure $\mathcal{J} \in O(T \oplus T^*)$ such that $[\mathcal{J}, \mathcal{J}] = 0$.

Examples:
$$\mathcal{J}_J = \begin{pmatrix} -J & \\ & J^* \end{pmatrix}, \quad \mathcal{J}_\omega = \begin{pmatrix} & -\omega^{-1} \\ \omega & \end{pmatrix}$$

Local invariant:

- $\mathcal{J}=\begin{pmatrix} A & \pi \\ \sigma & -A^* \end{pmatrix}$, and π is a Poisson structure.
- $k := n \frac{1}{2} \text{rk } \pi$, called type of GCS.

complex $\rightarrow n, n-1, \cdots, 1, 0 \leftarrow$ symplectic

Definition: complex structure $\mathcal{J} \in O(T \oplus T^*)$ such that $[\mathcal{J}, \mathcal{J}] = 0$.

Examples:
$$\mathcal{J}_J = \begin{pmatrix} -J & \\ & J^* \end{pmatrix}, \quad \mathcal{J}_\omega = \begin{pmatrix} & -\omega^{-1} \\ \omega & \end{pmatrix}$$

Local invariant:

- emy
- $\mathcal{J}=\begin{pmatrix} A & \pi \\ \sigma & -A^* \end{pmatrix}$, and π is a Poisson structure.
- $k := n \frac{1}{2} \text{rk } \pi$, called type of GCS.

complex $\rightarrow n$, n-1, \cdots , 1, 0— symplectic

Definition: complex structure $\mathcal{J} \in O(T \oplus T^*)$ such that $[\mathcal{J}, \mathcal{J}] = 0$.

Examples:
$$\mathcal{J}_J = \begin{pmatrix} -J & \\ & J^* \end{pmatrix}, \quad \mathcal{J}_\omega = \begin{pmatrix} & -\omega^{-1} \\ \omega & \end{pmatrix}$$

Local invariant:

- $\mathcal{J} = \begin{pmatrix} A & \pi \\ \sigma & -A^* \end{pmatrix}$, and π is a Poisson structure.
- $k:=n-\frac{1}{2}{\rm rk}\ \pi$, called type of GCS. ${\rm complex} \to n,\ n-1,\ \cdots,\ 1,\ 0 \leftarrow {\rm symplectic}$

Definition: complex structure $\mathcal{J} \in O(T \oplus T^*)$ such that $[\mathcal{J}, \mathcal{J}] = 0$.

Examples:
$$\mathcal{J}_J = \begin{pmatrix} -J & \\ & J^* \end{pmatrix}, \quad \mathcal{J}_\omega = \begin{pmatrix} & -\omega^{-1} \\ \omega & \end{pmatrix}$$

Local invariant:

- $\mathcal{J}=\begin{pmatrix} A & \pi \\ \sigma & -A^* \end{pmatrix}$, and π is a Poisson structure.
- $k := n \frac{1}{2} \text{rk } \pi$, called type of GCS.

complex $\rightarrow n \cap n - 1, \dots, 1, 0 \leftarrow$ symplectic

Kähler geometry

Definition: triple (g, J, ω) such that

Equivalently: pair (J, ω) such that $(-\omega J)^* = -\omega J$ and $-\omega J > 0$

Equivalently: pair $(\mathcal{J}_J,\mathcal{J}_\omega)$ such that

$$\begin{pmatrix} -J & \\ & J^* \end{pmatrix} \begin{pmatrix} & -\omega^{-1} \\ \omega & \end{pmatrix} = \begin{pmatrix} & -\omega^{-1} \\ & \mathcal{D} \end{pmatrix} \begin{pmatrix} -J & \\ & J^* \end{pmatrix} = \begin{pmatrix} & g^{-1} \\ g & \end{pmatrix} > 0$$

Definition: complex structure $\mathcal{J} \in O(T \oplus T^*)$ such that $[\mathcal{J}, \mathcal{J}] = 0$.

Examples:
$$\mathcal{J}_J = \begin{pmatrix} -J & \\ & J^* \end{pmatrix}, \quad \mathcal{J}_\omega = \begin{pmatrix} & -\omega^{-1} \\ \omega & \end{pmatrix}$$

Local invariant:

- $\mathcal{J} = \begin{pmatrix} A & \pi \\ \sigma & -A^* \end{pmatrix}$, and π is a Poisson structure.
- $k := n \frac{1}{2} \text{rk } \pi$, called type of GCS.

complex $\rightarrow n, n-1, \cdots, 1, 0 \leftarrow$ symplectic

Kähler geometry

Definition: triple (g, J, ω) such that

Equivalently: pair (J, ω) such that $(-\omega J)^* = -\omega J$ and $-\omega J > 0$

Equivalently: pair $(\mathcal{J}_J, \mathcal{J}_\omega)$ such that

$$\begin{pmatrix} -J \\ J^* \end{pmatrix} \begin{pmatrix} \omega \end{pmatrix} \begin{pmatrix} -\omega^{-1} \\ \omega \end{pmatrix} = \begin{pmatrix} \omega \end{pmatrix} \begin{pmatrix} -\omega^{-1} \\ \omega \end{pmatrix} \begin{pmatrix} -J \\ J^* \end{pmatrix} = \begin{pmatrix} g^{-1} \\ g \end{pmatrix} > 0$$

Kähler geometry

Definition: triple (g, J, ω) such that

Equivalently: pair (J, ω) such that $(-\omega J)^* = -\omega J$ and $-\omega J > 0$

Equivalently: pair $(\mathcal{J}_J,\mathcal{J}_\omega)$ such that

$$\begin{pmatrix} -J \\ J^* \end{pmatrix} \begin{pmatrix} \omega \end{pmatrix} = \begin{pmatrix} -\omega^{-1} \\ \omega \end{pmatrix} \begin{pmatrix} -\omega^{-1} \\ \omega \end{pmatrix} \begin{pmatrix} -J \\ J^* \end{pmatrix} = \begin{pmatrix} g^{-1} \\ g \end{pmatrix} > 0$$

Generalized Kähler geometry $U(n,n) \rightarrow U(n) \times U(n)$

Definition: pair $(\mathcal{J}_A, \mathcal{J}_B)$ of generalized complex structures such that

$$\mathcal{J}_A \mathcal{J}_B = \mathcal{J}_B \mathcal{J}_A = G > 0$$

Properties:

$$\bullet \ \operatorname{type}(\mathcal{J}_A) + \operatorname{type}(\mathcal{J}_B) \ \begin{cases} \leq n \\ \equiv n \pmod{2} \end{cases}$$

• $C_{\pm} := \pm 1$ -eigenspaces of G. These are complex for $\mathcal{J}_A, \mathcal{J}_B$ and \pm -definite. By projection, this induces a Riemannian metric g, a 2-form b, and two Hermitian almost complex structures J_{\pm} on the tangent bundle T.

Theorem 1 [MG]: Algebraic equivalence $(\mathcal{J}_A, \mathcal{J}_B) \leftrightarrows (J_+, J_-, b, g)$, given by

$$\mathcal{J}_{A/B} = \frac{1}{2} \begin{pmatrix} 1 \\ b & 1 \end{pmatrix} \begin{pmatrix} J_{+} \pm J_{-} & -(\omega_{+}^{-1} \mp \omega_{-}^{-1}) \\ \omega_{+} \mp \omega_{-} & -(J_{+}^{*} \pm J_{-}^{*}) \end{pmatrix} \begin{pmatrix} 1 \\ -b & 1 \end{pmatrix}$$

Theorem 2 [MG]: Generalized Kähler structure $(\mathcal{J}_A, \mathcal{J}_B)$ is integrable if and only if J_{\pm} are integrable and

$$d^c_-\omega_- = -d^c_+\omega_+ = db + H$$

Equivalently: $\nabla^{\pm}J_{\pm}=0$, where $\nabla^{\pm}=\nabla\pm\frac{1}{2}g^{-1}(db+H)$, and db+H is of type (2,1)+(1,2).

Gates, Hull, Roček (1984): General target space geometry for N=(2,2) sigma model

Kapustin: $(\mathcal{J}_A, \mathcal{J}_B)$ are topological twists.

б

Theorem 1 [MG]: Algebraic equivalence $(\mathcal{J}_A, \mathcal{J}_B) \leftrightarrows (J_+, J_-, b, g)$, given by

$$\mathcal{J}_{A/B} = \frac{1}{2} \begin{pmatrix} 1 \\ b \end{pmatrix} \begin{pmatrix} J_{+} \pm J_{-} & -(\omega_{+}^{-1} \mp \omega_{-}^{-1}) \\ \omega_{+} \mp \omega_{-} & -(J_{+}^{*} \pm J_{-}^{*}) \end{pmatrix} \begin{pmatrix} 1 \\ -b \end{pmatrix}$$

Theorem 2 [MG]: Generalized Kähler structure $(\mathcal{J}_A, \mathcal{J}_B)$ is integrable if and only if J_{\pm} are integrable and

$$d^c_-\omega_- = -d^c_+\omega_+ = db + H$$

Equivalently: $\nabla^{\pm}J_{\pm}=0$, where $\nabla^{\pm}=\nabla\pm\frac{1}{2}g^{-1}(db+H)$, and db+H is of type (2,1)+(1,2).

Gates, Hull, Roček (1984): General target space geometry for N=(2,2) sigma model

Kapustin: $(\mathcal{J}_A, \mathcal{J}_B)$ are topological twists.

Remark: J_+, J_- commute if and only if $type(\mathcal{J}_A) + type(\mathcal{J}_B) = n$.

Examples of generalized Kähler

- any Kähler manifold $(J_{\pm} = J, b = 0)$, type = (n, 0) or (0, n)
- hyperKähler, where $(J_+,J_-,b,g)=(I,J,\omega_K,g)$, type = (0,0)
- primary Hopf surfaces and finite covers thereof, type = (1,1) or (0,0) with jumping to (2,0) along anticanonical divisor
- even semi-simple Lie group $(J_+, J_-, b, g) = (J_R, J_L, 0, Kill),$ H = Cartan, type jumping
- (N. Hitchin) moduli space of instantons on a generalized Kähler manifold is generalized Kähler

Hodge theory for generalized Kähler

- $(\mathcal{J}_A, \mathcal{J}_B)$ commuting endomorphisms act via Spin representation on $S = \wedge^{\bullet} T^*$.
- decomposition of forms into (ir, is)-eigenspaces for $(\mathcal{J}_A, \mathcal{J}_B)$:

$$\wedge^{\bullet} T^* \otimes \mathbb{C} = \bigoplus_{\substack{|r+s| \le n \\ r+s \equiv n \pmod{2}}} U^{r,s}$$

• decomposition is orthogonal in the Born-Infeld metric (,) on forms depending on g + b.

$$U_{0,n}$$
 ... $U_{n-1,1}$ $U_{n-1,1}$ $U_{n,0}$ $U_{n-1,n}$... $U_{n-1,n}$ $U_{n,0}$ $U_{n,0}$... $U_{n,0}$... $U_{n,0}$... $U_{n,0}$... $U_{n,0}$... $U_{n,0}$... $U_{n,0}$...

• exterior derivative d (or $d_H = d + H$) decomposes into 4 differentials:

$$d = \delta_{+} + \delta_{-} + \overline{\delta}_{+} + \overline{\delta}_{-},$$

where the differential operators act as follows:

Lemma (generalized Kähler identities):

$$\overline{\delta}_+^* = -\delta_+$$
 and $\overline{\delta}_-^* = \delta_-$.

 \Rightarrow classical N = (2,2) SUSY algebra representation on $\Omega^{\bullet}(M,\mathbb{C})$

$$U_{0,n}$$
 ... $U_{n-1,1}$ $U_{n-1,1}$ $U_{n,0}$ $U_{n-1,-1}$... $U_{n-1,-1}$... $U_{n-1,-1}$... $U_{n,0}$

• exterior derivative d (or $d_H = d + H$) decomposes into 4 differentials:

$$d = \delta_{+} + \delta_{-} + \overline{\delta}_{+} + \overline{\delta}_{-},$$

where the differential operators act as follows:

Lemma (generalized Kähler identities):

$$\overline{\delta}_+^* = -\delta_+$$
 and $\overline{\delta}_-^* = \delta_-$.

 \Rightarrow classical N=(2,2) SUSY algebra representation on $\Omega^{\bullet}(M,\mathbb{C})$

Theorem [MG]: The *H*-twisted cohomology of a compact generalized Kähler manifold carries a Hodge decomposition:

$$H_H^{\bullet}(M, \mathbb{C}) = \bigoplus_{\substack{|p+q| \le n \\ p+q \equiv n (\bmod 2)}} \mathcal{H}^{p,q},$$

Corollary: A 4-dimensional generalized Kähler manifold with H = 0 must have b_1 even and b_2^+ odd, and to admit type = (1,1) it must also have b_2 even.

Note: In the usual Kähler case, this decomposition is *not* the usual (p,q)-decomposition. It was first discovered by Michelsohn and is called the Clifford decomposition. if $(\mathcal{J}_A,\mathcal{J}_B)=(\mathcal{J}_J,\mathcal{J}_\omega)$, then

$$U^{n-r-s,r-s} \cong \Omega^{r,s}$$
.

12

Pirsa: 04110016

• exterior derivative d (or $d_H = d + H$) decomposes into 4 differentials:

$$d = \delta_{+} + \delta_{-} + \overline{\delta}_{+} + \overline{\delta}_{-},$$

where the differential operators act as follows:

Lemma (generalized Kähler identities):

$$\overline{\delta}_+^* = -\delta_+$$
 and $\overline{\delta}_-^* = \delta_-$.

 \Rightarrow classical N=(2,2) SUSY algebra representation on $\Omega^{\bullet}(M,\mathbb{C})$

Theorem [MG]: The H-twisted cohomology of a compact generalized Kähler manifold carries a Hodge decomposition:

$$H_H^{\bullet}(M,\mathbb{C}) = \bigoplus_{\substack{|p+q| \leq n \\ p+q \equiv n (\bmod 2)}} \mathcal{H}^{p,q}$$

Corollary: A 4-dimensional generalized Kähler manifold with H = 0 must have b_1 even and b_2^+ odd, and to admit type = (1,1) it must also have b_2 even.

Note: In the usual Kähler case, this decomposition is *not* the usual (p,q)-decomposition. It was first discovered by Michelsohn and is called the Clifford decomposition. if $(\mathcal{J}_A,\mathcal{J}_B)=(\mathcal{J}_J,\mathcal{J}_\omega)$, then

$$U^{n-r-s,r-s} \cong \Omega^{r,s}$$
.

12

Pirsa: 04110016

Geometric T-duality (joint with G. Cavalcanti)

- our approach: T-duality of any generalized geometry, assuming invariance, but allowing flux. Based on the topological approach of Bouwknegt, Evslin, Mathai.
- early ideas of Minasian on the use of Spin(n,n) "bispinors" to mirror symmetry.
- recent work of Ben-Bassat on T-duality of generalized complex structures where invariance is relaxed to semi-flatness.

13

Pirsa: 04110016 Page 27/41

Theorem [MG]: The *H*-twisted cohomology of a compact generalized Kähler manifold carries a Hodge decomposition:

$$H_H^{\bullet}(M,\mathbb{C}) = \bigoplus_{\substack{|p+q| \le n \\ p+q \equiv n (\bmod 2)}} \mathcal{H}^{p,q}.$$

Corollary: A 4-dimensional generalized Kähler manifold with H = 0 must have b_1 even and b_2^+ odd, and to admit type = (1,1) it must also have b_2 even.

Note: In the usual Kähler case, this decomposition is *not* the usual (p,q)-decomposition. It was first discovered by Michelsohn and is called the Clifford decomposition. if $(\mathcal{J}_A,\mathcal{J}_B)=(\mathcal{J}_J,\mathcal{J}_\omega)$, then

$$U^{n-r-s,r-s} \cong \Omega^{r,s}$$
.

12

Pirsa: 04110016

Geometric T-duality (joint with G. Cavalcanti)

- our approach: T-duality of any generalized geometry, assuming invariance, but allowing flux. Based on the topological approach of Bouwknegt, Evslin, Mathai.
- early ideas of Minasian on the use of Spin(n,n) "bispinors" to mirror symmetry.
- recent work of Ben-Bassat on T-duality of generalized complex structures where invariance is relaxed to semi-flatness.

13

Pirsa: 04110016 Page 29/41

• exterior derivative d (or $d_H = d + H$) decomposes into 4 differentials:

$$d = \delta_{+} + \delta_{-} + \overline{\delta}_{+} + \overline{\delta}_{-},$$

where the differential operators act as follows:

Lemma (generalized Kähler identities):

$$\overline{\delta}_+^* = -\delta_+$$
 and $\overline{\delta}_-^* = \delta_-$.

 \Rightarrow classical N = (2,2) SUSY algebra representation on $\Omega^{\bullet}(M,\mathbb{C})$

Geometric T-duality (joint with G. Cavalcanti)

- our approach: T-duality of any generalized geometry, assuming invariance, but allowing flux. Based on the topological approach of Bouwknegt, Evslin, Mathai.
- early ideas of Minasian on the use of Spin(n,n) "bispinors" to mirror symmetry.
- recent work of Ben-Bassat on T-duality of generalized complex structures where invariance is relaxed to semi-flatness.

13

Pirsa: 04110016 Page 31/41

First step: T-duality between principal S^1 -bundles

Data:

 $\begin{cases} \pi: P \longrightarrow B \text{ a principal } S^1\text{-bundle} \\ u \in \Omega^1(P) \text{ a connection, with curvature } du = F \\ H \in \Omega^3_{cl}(P)^{S^1} \text{ a NS 3-flux, } [H] \in H^3(M,\mathbb{Z}). \end{cases}$

write $H = u \wedge \tilde{F} + h$, $h \in \Omega^3(B)$.

Dual data:

 $\begin{cases} \pi_*[H] \in H^2(B,\mathbb{Z}) \text{ determines a dual principal } S^1\text{-bundle } \tilde{P} \\ \text{choose a connection } \tilde{u} \text{ on } \tilde{P} \\ \tilde{H} := \tilde{u} \wedge F + h \end{cases}$

First step: T-duality between principal S^1 -bundles

Data:

 $\begin{cases} \pi: P \longrightarrow B \text{ a principal } S^1\text{-bundle} \\ u \in \Omega^1(P) \text{ a connection, with curvature } du = F \\ H \in \Omega^3_{cl}(P)^{S^1} \text{ a NS 3-flux, } [H] \in H^3(M,\mathbb{Z}). \end{cases}$

write $H = u \wedge \tilde{F} + h$, $h \in \Omega^3(B)$.

Dual data:

 $\begin{cases} \pi_*[H] \in H^2(B,\mathbb{Z}) \text{ determines a dual principal } S^1\text{-bundle } \tilde{\mathbb{P}}_{\widetilde{I}} \\ \text{choose a connection } \tilde{u} \text{ on } \tilde{P} \\ \tilde{H} := \tilde{u} \wedge F + h \end{cases}$

Exchanging flux for topology

Theorem [BEM]: The H-twisted K-theory of P is isomorphic to the \tilde{H} -twisted K-theory of \tilde{P} .

Theorem [Cavalcanti, MG]: Let $F = u \wedge \tilde{u}$. The map

$$\mathcal{F} = g_* \circ e^F \circ f^*$$

induces an isomorphism of Courant algebroids

$$\left(\frac{T_P \oplus T_P^*}{S^1}, H\right) \longrightarrow \left(\frac{T_{\tilde{P}} \oplus T_{\tilde{P}}^*}{S^1}, \tilde{H}\right)$$

First step: T-duality between principal S^1 -bundles

Data:

 $\begin{cases} \pi: P \longrightarrow B \text{ a principal } S^1\text{-bundle} \\ u \in \Omega^1(P) \text{ a connection, with curvature } du = F \\ H \in \Omega^3_{cl}(P)^{S^1} \text{ a NS 3-flux, } [H] \in H^3(M,\mathbb{Z}). \end{cases}$

write $H = u \wedge \tilde{F} + h$, $h \in \Omega^3(B)$.

Dual data:

 $\begin{cases} \pi_*[H] \in H^2(B,\mathbb{Z}) \text{ determines a dual principal } S^1\text{-bundle } \tilde{P} \\ \text{choose a connection } \tilde{u} \text{ on } \tilde{P} \\ \tilde{H} := \tilde{u} \wedge F + h \end{cases}$

Exchanging flux for topology

Theorem [BEM]: The H-twisted K-theory of P is isomorphic to the \tilde{H} -twisted K-theory of \tilde{P} .

Theorem [Cavalcanti, MG]: Let $F = u \wedge \tilde{u}$. The map

$$\mathcal{F} = g_* \circ e^F \circ f^*$$

induces an isomorphism of Courant algebroids

$$\left(\frac{T_P \oplus T_P^*}{S^1}, H\right) \longrightarrow \left(\frac{T_{\tilde{P}} \oplus T_{\tilde{P}}^*}{S^1}, \tilde{H}\right)$$

Transport of geometric structure

The theorem can be used to transport generalized geometries from one manifold to the T-dual side.

Examples:

- Let G be a generalized metric on P. Then $g_* \circ e^F \circ f^*(G)$ is a generalized metric $(\tilde{g} + \tilde{b})$ on \tilde{P} . These are known as the Buscher rules
- Let D be a Dirac structure on P. Then $g_* \circ e^F \circ f^*(D)$ is a Dirac structure on \tilde{P} . Operations f^* , f_* defined by Weinstein.
- Let \mathcal{J} be a generalized complex structure on P. Then $g_* \circ e^F \circ f^*(\mathcal{J})$ is a generalized complex structure $\tilde{\mathcal{J}}$ on \tilde{P} , with $\mathsf{type}(\tilde{\mathcal{J}}) = \mathsf{type}\mathcal{J} \pm 1$. E.g. in 6 dimensions, 3 T-dualizations are required to go from $\mathsf{type} = 3$ to $\mathsf{type} = 0$.
- Compare with gerbe T-duality of Donagi and Pantev.

16

Page 37/41

Pirsa: 04110016

Transport of generalized Kähler structure

$$(\mathcal{J}_A, \mathcal{J}_B) \stackrel{T}{\longleftarrow} (\tilde{\mathcal{J}}_A, \tilde{\mathcal{J}}_B)$$

$$H_c^{r,s}(M) \longrightarrow \tilde{H}_c^{r,s}(M)$$

If $(\mathcal{J}_A, \mathcal{J}_B)$ were a Kähler 2n-manifold and we could perform n T-dualities,

$$(\mathcal{J}_J, \mathcal{J}_\omega) \longleftrightarrow (\mathcal{J}_{\tilde{\omega}}, \mathcal{J}_{\tilde{J}})$$

$$H^{p,q} \longrightarrow H^{n-p,q}$$

17

Pirsa: 04110016

First step: T-duality between principal S^1 -bundles

Data:

 $\begin{cases} \pi: P \longrightarrow B \text{ a principal } S^1\text{-bundle} \\ u \in \Omega^1(P) \text{ a connection, with curvature } du = F \\ H \in \Omega^3_{cl}(P)^{S^1} \text{ a NS 3-flux, } [H] \in H^3(M,\mathbb{Z}). \end{cases}$

write $H = u \wedge \tilde{F} + h$, $h \in \Omega^3(B)$.

Dual data:

 $\begin{cases} \pi_*[H] \in H^2(B,\mathbb{Z}) \text{ determines a dual principal } S^1\text{-bundle } \tilde{P} \\ \text{choose a connection } \tilde{u} \text{ on } \tilde{P} \\ \tilde{H} := \tilde{u} \wedge F + h \end{cases}$

Exchanging flux for topology

Theorem [BEM]: The H-twisted K-theory of P is isomorphic to the \tilde{H} -twisted K-theory of \tilde{P} .

Theorem [Cavalcanti, MG]: Let $F = u \wedge \tilde{u}$. The map

$$\mathcal{F} = g_* \circ e^F \circ f^*$$

induces an isomorphism of Courant algebroids

$$\left(\frac{T_P \oplus T_P^*}{S^1}, H\right) \longrightarrow \left(\frac{T_{\tilde{P}} \oplus T_{\tilde{P}}^*}{S^1}, \tilde{H}\right)$$

Any questions?

18

Pirsa: 04110016