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I Background and Motivatuon

= Suggests possibilities for interpretation of QM.
o Reality of both states - Aharonov (2001):

“Even at present, before the future’ measurements, the
backward avolving quantum state [...] exisis! [t exists in the
same way as the gquantum state evolving from the past exists.
An element of arbilrariness: “‘Why this particular outcome and
not some other?" might discourage, but the allemative [...] — the
collapse of the quantum wave — is clearly worsa than that.™

1 Counterfactual interpretation - Mohrhoff (2000):

= “ABL probabilities are based on a complete set of facts, and
are therefore objective, only if none of the measurements to
the possible results of which they are assigned is actually
performed (that is, only if between the ‘preparation’ or
presslection and the ‘retroparation’ or postselection no
measurement is performed).”
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Background and Motivation

= The counterfactual interpretation has several difficulties

2 We will see that “Logical PPS paradoxes” would imply that
reality is contextual.

Further, a similar interpretation of “classical” probability
would also imply that reality is contextual.

= Feason - It does not take the possibility that measurements
might disturb the system into account.

. There is no compelling reason to treat the ABL
probabilities counterfactually.

= See Kastner Phil. Sci. 70, 145 (2003) for refs.

= Main resuits:

a Logical PPS paradoxes can be explained in noncontextual
hidden variable theories, provided measurements disturb
the values of the hidden variables.

However, for every logical PPS paradox there is a related
proof of contextuality, which can be constructed from the
same set of measurements.
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2 Counterfactual interpretation - Mohrhoff (2000):




‘Eackground and Motivation

s The counterfactual interpretation has several difficuities

We will see that “Logical PPS paradoxes” would impiy that
reality is contextual.

Further, a similar interpretation of “classical” probability
would aiso imply that reality is contextual.

=« Beason - It does not take the possibility that measurements
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There is no compelling reason to treat the ABL
probabilities counterfactually.

= See Kastner Phil. Sci. 70, 145 (2003) for refs.

= Main resuits:

2 Logical PPS paradoxes can be expilained in noncontextual
hidden variable theones, provided measurements disturb
the values of the hidden variables.

However, for every logical PPS paradox there is a related
proof of contextuality, which can be constructed from the
same set of measurements.
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Why should we care about PPS systems?

Despite the controversy over interpretation, the TSVF
agrees with QM for actual measurements.

TSVF has yielded resuits of interest to quantum
information theorists:
a The Mean King's Problem (Vaidman et. al., 1987)

a Cryptography protocois (Bub, 2000, Botero & Heznik,
1999)

The formalism has been extended to more general

types of pre- and post-selection (Aharovov & Reznik,
1995).

a e.q. comrelated pre- and post-selections of the type used in
standard quantum cryptography (BB84, B92, etc.)

o There is an analog of entanglement, which might be
regarded as a resource for ginfo.

It seems likely that many PPS effects could be

exploited in guantum information protocois.

a To find out if this is the case, we need to know whether
these effects can be simulated “classically” and, if so, how

efficiently? This means that we should re-examine the
foundational questions with this in mind.




Fiﬂckgmund and Motivation

= Pre-and Post-Selection was introduced by Aharonov,
Bergmann and Lebowitz (ABL) in 1964.
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= Two-State-Vector Formalism (TSVF) (see Aharonov &

Vaidman, 2001)
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Eoundational motivation - Time symmetry in the
quantum measurement process.
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= Despite the controversy over interpretation, the TSVF
agrees with QM for actual measurements.

TSVF has yielded results of interest to quantum
information theorists:
a The Mean King's Problem (Vaidman et. al., 1987)

a Cryptography protocols (Bub, 2000, Botero & Reznik,
1999)

The formalism has been extended to more general
types of pre- and post-selection (Aharovov & Reznik,
1995).

a e.g. correlated pre- and post-selections of the type used in
standard quantum cryptography (BB84, B92, eic.)

2 There is an analog of entanglement, which might be
regarded as a resource for ginfo.

It seems likely that many PPS effects could be

exploited in quantum information protocois.

2 Tao find out if this is the case, we need to know whether
these effects can be simulated “classically” and, if so, how
efficiently? This means that we should re-examine the
foundational questions with this in mind.
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1) Operatonal Notation
M A measurement.
X, €(1,2, ..n} The outcome of M.
pre/post Refers to pre/post-selection.

AL SA The occurrence of successful
pre/post-selection.

Pre- Post-
selection selection

= Goal: Compute p(Xy=j|Apes Apso M)




2) Pre- and Post-Selection in Quantum Theory

2.1) Quanmum Measurement Formalism
= States: Density operators, g, on a d-dimensional H. S.
= Sharp quantum measurements

Statistical aspect of M given by a PVM {PHJ]

P X =) =Tr(Py;0)

Transformation aspect given by CP-maps {Ey;}
Ex /(D) =Py where Tr(£%A)B) = T(AE(B))
On obtaining Xy, = J-

p— Ex ) I Tr(Exe (O)

Liders Rule (projection postulate)

&0 = Py, P Py
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a Xu€{lL2,...n} - The outcome of M.
a prefpost - Refers to pre/post-selection.

a A JA_., - The occurrence of successful
pre/post-selection.

| . Pre-
selection

= Goal: Compute p(Xy =j| Ay e Apse M)
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2.2) The ABL Rule

= Assumptions
a Density matrix is I/d prior to pre-selection.
a Pre-selection measurement obeys Liders Rule.

= Notation
EREAS (Amﬂ) comresponds to a projector 1, (L)

2  The measurement M corresponds to a PVM { P :».{JJ"
and CP-maps {SMJ}‘

p(X e = /1A e A o M)

P(AwlAm’XM =iz M)P(XM = flAp-vM)

> A A Ko = MJp (s, = KA, M)
k
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a Density matrix is I/d prior to pre-selection.
o Pre-selection measurement obeys Liders Rule.

= Notation

o Apr: (Am) corresponds to a pmi&ctmﬂm (l'[m).
a2 The measurement M corresponds to a PVM { P
and CP-maps {€,;}.

M)

p(Xy = A e A M)

= p(Am|Am*XM = f:M)P(XM = _,J'|APW,M)
;p(APmlAPW’X“ :k’M]p(XM :k’Am,M)

_ Tr(i,.6,,(0,)
R o)




2.2) The ABL Rule

= Special cases:

a Intermediate Lilders rule

Tr(( B, J1_R, )

M.j" "pre

ZTr(H Brvr,. )

P'(XM = -tﬁ"m' AM'M)

a Hank-1 pre- and post-selection projectors

M= ) (Wl T = W) { Wit

M)= I(""pm |PM-:in-rr)rlz
;K“Fmﬂ ‘PM&‘ ‘Fpu>}

plXy = A A L




™ States: Density Operaios; g == == =

Sharp quantum measurements

2 Statistical aspect of M given DY a PVM [Py}

p X =) =TrPrsP)

Bom rule:

5 Transformation aspect given by CP-maps (&)

EufD=Pry e TH(EA)B) = THAEB)

. On obtaining Xy = J-

p— Ex (D) | THEWLPD

stulate)

g Luders Rule {prﬂia«cli.nn po

Ex(0) =PriP Pw
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22) The ABL Rule

= Special cases:

o Intermediate Laders rule

o L Tr(nmﬂpm_mePM.)]
k

a2 Pank-1 pre- and post-selection projectors

.= | Woee ) { Wiee | L= | Wpost) { Woost|

P(Xm=j1f'tp.==AM,M)" K"’mﬂ'*om'“'m>| j

f ;qupm iPM*wPu)r
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= Assumptions
. Density matrix is I/d prior to pre-selection.
. Pre-selection measurement obeys Liders Aule.
= Notation
A (Apnﬂ) correspands to a projector 1§ S (ﬂm}.

. The measurement M corresponds to a PVM {Py;]
and CP-maps {Ey;l-

P(xm = j\Am'Awﬂ’M)

plans |4 X = iM)p(x, = 1A, M)

=S DA A e X M)XKy = KA M)
k

el ()
T T [@,.)







2.3) The “Three-Box Paradox™

Pre-selection: in}=ll}+|1}+|3}
Post-selection:  [We ) =i1}+|?.}-|3}
Intermediate measurements:

M: (Paua=11 M1} Py2=12) (21 +13 3]}
N: (Puy =120 2] Pra= 11){ 11+ 3)(31)

P{XM=”AF-¢'AWWL'{}=P{XN=HPLM' Apose N) = 1

HE‘ESU"'. {WPHIPMZI“[F:}={WPH[FN21“JF:}=D

Counterfactual interpretation: David Blaine is in both
boxes at the same time!

M.S..Ln'ﬁ::a?m:-:tlm







W) =11)+12)+13)
Post-selection:  [Weu ) =11)+]2)-13)
Intermediate measurements:
M: (Pyy =111 Pu.=12)(21+13)(3])
N: (Pyy=12)(2} Pyo= 1)1+ 3031}

DXy = 1| Aps A e M) =P =1 | A A N) =1

Heason: (me,llewFt}={wFﬂlPH:lIwF:}=ﬂ

Counterfactual interpretation: David Blaine is in both
boxes at the same time!
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3) Hidden Varable Theories

3.1) The “Partitioned-Box Paradox™

B

F

3 Left verification

Similarly for Right,Front and Back verification.

Al 5 Laifer - Peometer lnsttune




3.1) The “Partitioned Box Paradox”

s Pre-selection: Successful Front Verification.
Post-selection: Successful Back Verification
Possible Intermediate measurements:

Left Verification or Right Verification

LV case

'?‘?

Counterfactual interpretation: The ball is both on the left
and the right.

Correct interpretation: Different measurements disturb the
ball in different ways.

9 Movomber 2004 AL 5. Leifer - Penmcter Insgnue




3.2) General Formalism of HVTs

Set of ontic states A € €.

States correspond to probability distributions p(A).

Assumption: Outcome determinism for sharp
measurements.

Measurement M corresponds to:
2 Statistical aspect: indicator functions { X}

IMJ(J‘-} =0orl ZJ- I-M,_:{}"} =1
P, Xoe =1 = Jon Xoas OO 1 (1) A

~ Transformation aspect: Stochastic transformations Dy ;]

Dy (A, ) is prob. of transition from @ to A
a Define transition matrices FM J(l,m) =Dy, _,(l.ﬂl‘:l I.M,(J\-)

Ja Dy (A.@) dA = 2 (@)

ML 5. Leifer - Permneter [nsnnue







Set of ontic states A € Q.

States correspond to probability distributions p(A).

Assumption: Outcome determinism for sharp
measurements.

Measurement M corresponds to:

- Statistical aspect: indicator functions {IHJ}

y & 4(}"} =0orl E_,- xu_'(l) =1

P, [XH =J)= .rn I.;.U{l} (3] (A) dA

. Transformation aspect: Stochastic transformations { Dy ;]

Dy, J{l,u]] is prob. of transition from @ to A.

= Define transition matrices [y (A,0) =Dy [Aw) y R0,

Ja T f(A,@) dA = Xy (©)
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3.2) General Formalism of HVTs

[T, (b ouokio
L . o)p(@)don

Update rule u(*l ), £

3.3) Pre- and Post-Selection in HVTs

Pre-selection prepares Hore.
Post-selection corresponds 10 X,

Intermediate measurement M: {xw}, {Fm_.]

By Bayes' Theorem:

pr-: Mru ;e (@)ddde

P(XM = —’1AM’AW’M) Lx M(l,m)p (w)dA de




3.4) Noncontextuality

If there is an outcome j of M and an outcome k of N
that have the same probability for all preparations then

Aaaj = Koex

In QM equivalence = both ouicomes associated to the
same projector P.

Ky = Xnx= Kp
— projectors associated 10 unique properties.

— for any distribution p can assign probabilities 0
projectors via p(P) = [gxp(A)R(A)dA.

Algebraic constraints

0< p(P)=1 For [P.Q]=0
p(I-P)=1-p(P)  p(PQ)<p(P) p(PO)< p(0)
o(1)=1, p(P,)=0 p(P+0—PQ)=p(P)+p(0)¥ p(PQ)




3.5) Noncontextuality, PPS and Disturbance

chanabuwtuappiymesamnstmmtnAEL
probabilities.

Definition: We have a Logical PPS paradox whenever
the ABL rule assigns probability 1 or 0 to the ouicomes
of measurements, such that associating the same

probabilities to the projectors corresponding to those
outcomes would violate the algebraic constraints.

5 The Three-Box paradox is an example of this.

You could explain Logical PPS paradoxes via
contextuality. However, this is not required as our
“partitioned box” example shows.

Reproducing ABL predictions does place nontrivial
constraints on the transitions 'y ;

2 They must be nontrivial CyA0) # S(A,0) K (@)-

a2 Outcomes associated with the same projector, but different
CP-maps, must be associated with different transitions.
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Aaaj = Ktk

= In QM equivalence = both outcomes associated to the
same projector -

I&u=1r-l.x=xp

ectors associated to unique properties.

= :?pfﬂ]

ution p can assign probabilities 10

. = for any distrib
projectors via p(P) = J'nxp(l]u{l)d}..

AlgebraiC constraints

For [P,Q]:'U
o(PQ)<p(P). P(PQ)= p(Q)
p(P+0-PQ)= p(P)+ p(Q)# p(PQ)

o< p(P)<1
pl1-P)=1-p(P)
p(1)=1, P(Pun)=0

H-&l&d-?;dﬂtﬂlmm




probabilities.

Definition: We have a Logical PPS paradox whenever
the ABL rule assigns probability 1 or 0 to the outcomes
of measurements, such that associating the same
probabilities to the projectors commresponding to those
outcomes would viclate the algebraic constraints.

a2 The Three-Box paradox is an exampie of this.

You could explain Logical PPS paradoxes via
contextuality. However, this is not required as our
“partitioned box” example shows.

Reproducing ABL predictions does place nontrivial
constraints on the transitions ', ;.

a They must be nontrivial Iy, *(}.,m)_ #= O(A, ) Ay Aw).

a Outcomes associated with the same projector, but different
CP-maps, must be associated with different transitions.




= Whenever a set of projectors have ABL probabilities
that give rise to a logical PPS paradox, and the pre-
and post-selection projectors are not orthogonal, one
can use fine grainings of the projectors, together with
the pre- and post-selection projectors to show that a
MNHVT is impossible.

4.1) Three box paradox and Clifton’s proot
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5) Conclusions and Open Questions

We have shown that:

a The existence of Logical PPS paradoxes in a theory does
not imply contextuality.

5 Nonetheless, each Logical PPS paradox is related o a
proof of contextuality.

Possible reason for discrepancy:

HVTs have to satisfy additional constraints in order 10
reproduce quantum predictions.

Conjecture: Existence of Logical PPS paradoxes + some
suitable analog of the uncertainty principle implies
contextuality.

= Justification: TaymaoryufSpanmsrﬂssa.Manarﬁlng.is
noncontextual and seems to be devoid of logical PPS
paradoxes.

Applications of logical PPS paradoxes in quantum
information theory?

s Use of our results in axiomatics of quantum theary?

AL 5. Leifer - Penmeter Insnmte




3) Hidden Variable Theories

3.1) The “Partitioned-Box Paradox™

B

F

a Left verification

o  Similarly for HightJFrcnt and Back verification.




We have shown that:

The existence of Logical PPS paradoxes in a theory does
not imply contextuality.

MNaonetheless, each Logical PPS paradox is related to a
proof of contextuality.

Possible reason for discrepancy:

a HVTs have to satisfy additional constraints in order to
reproduce quantum predictions.

Conjecture: Existence of Logical PPS paradoxes + some
suilable analog of the uncertainty principle implies
cantextuality.

= Justification: Toy theory of Spekkens has such an analog, is
noncontextual and seems to be devoid of logical PPS
paradoxes.

Applications of logical PPS paradoxes in quantum
information theory?

= Use of our resuits in axiomatics of quantum theory?
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Pre-selection: Successful Front Verification.
Post-selection: Successful Back Verification
Possible Intermediate measurements:

Left Verification or Right Verification

a LV case

Counterfactual interpretation: The ball is bath on the left
and the nght.

Qo

o Correct interpretation: Different measurements disturb the

ball in different ways.
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= Whenever a set of projectors have ABL probabilities
thatgive:isetualogijFSparadox.andmma-
and post-selection projectors are not orthogonal, one
can use fine grainings of the projectors, together with
the pre- and post-selection projectors to show that a

MNHVT is impossible.

4.1) Three box paradox and Clifton’s proof

Ho ¥, ¥) O [
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M. 5. Letfer - Pesimeter Insgnue




FI-.E) Failure of the Product Rule

Projectors onto Eigenvalues
Observable +1 -1
X®l EY P.
| IeZ Q. Q.
X®Z R=P = PQ|R=P.O+ P.O.|

1-)®10)
D

1'5"rﬂ+}@1u}+l|—}@'|1
/

R +_J_/’
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