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Qutline

® [ntroduction: a simple example.

® Generalizing the example: a class of P, T-invar.
topological phases.
Topological Quantum Computation.

® How do we get into these phases’
Microscopic Models.
Effective Field Theories.

® Conclusions, Open Problems
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What is the physics of a Hamiltonian such as

Hi=—Y JiS%: S5
.}

Large number of microscopic d.o.f. coupled together.

How do they react when you shine light, neutrons,
etc. on them?
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Starting point of analysis:
What phase is the system in?

Within a phase, certain properties are determined
(e.g. by symmetry) and others can be obtained
quant. by perturbing from a soluble model.

. A 4 [l i N &t )
e.g.an antiferromagnet BEE IR THAE ) 0L R Y
' ! ' ! ' ! ' 1’ ! v ! ' ! '
broken symmetry — il ol Bil 8
>ie . L 8 . i
additional Bragg peaks in neutron Wtk ek el Y

scattering; spin-flip scattering occurs

2

long-wavelength props.det.by S = / dex dr (d,n)”
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Other possibilities? Suppose the spins do not order.

They could form near-neighbor singlets
which resonate -- i.e. superpositions of

different singlet configs. (Anderson):

Germ of an idea
Need to make it precise.

What is the long-wavelength,
universal physics of such a state?

What is its effective field theory?’
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Starting point of analysis:
What phase is the system in?

Within a phase, certain properties are determined
(e.g. by symmetry) and others can be obtained
quant. by perturbing from a soluble model.
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Other possibilities? Suppose the spins do not order.

They could form near-neighbor singlets
which resonate -- i.e. superpositions of

different singlet configs. (Anderson):

Germ of an idea
Need to make it precise.

What is the long-wavelength,
universal physics of such a state?

What is its effective field theory?
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Other possibilities? Suppose the spins do not order.

They could form near-neighbor singlets
which resonate -- i.e. superpositions of

different singlet configs. (Anderson):

Germ of an idea
Need to make it precise.

What is the long-wavelength,
universal physics of such a state?

What is its effective field theory?
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Consider the ‘transition’ graph (Rokhsar and Kivelson):

Fluctuating loops

Details of // determine how they fluctuate.

This, in turn, determines the physics of such a state.

Goalk: understand possible states using this perspective.d.



A Simpler Model
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F,|0) = |0) = following relations hold in the gs.

l

I

Ground state: equal amplitude superposition
of all loop configurations
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Topological Properties

There are two inequivalent g.s. on the annulus,
corresponding to even/odd winding numbers.
They cannot be distinguished by local measurements.

(Topologically protected qubits.)

Excitations: vertices or plaquettes at which

Ay, =—1 or Fp=—

/Nhen one is taken around another, =
a minus sign results.
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Topological Properties
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Topological Quantum Computation

Donut = Coffee Cup = Rigidity Against Perturb.

(Fault Tolerance)

Local perturbations can neither measure nor
change topological degrees of freedom.

Pirsa: 04110007

(to exp. in size accuracy)



Effective Field Theory

These properties are encapsulated in a long-
wavelength field theory which is topological.

1 .
,S . -QF /(12.1' dT EHU/\ELIEJ)\

E " ‘—1“ coupled to plaquettes (vortices) and sites (particles).

Aharonov-Bohm — exotic braiding statistics (Wilczek)

Transition to a non-topol. phase = confinement
transition of Zo gauge theory (Senthil-Fisher)
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A simple model of interacting spins can have a
topological phase.

(. Topological Phases occur in the QHE,
but energy scales are lower than in spin sys.

l. Low-energy Hilbert space = loop configs.

2. Topologically-degenerate ground states which
are locally indistinguishable. (protected qubits)

3. Exotic Braiding Statistics of QPs.
(need non-Abelian to do non-trivial ops., read-out)

~geof ow-energy EFT is a TQFT



(Freedman,
Turaev-Viro)

Generalizing this Structure

® Loops may arise as domain ,
walls, dimers, chains of up-spins. ;S
i

® /1I:rules satisfied by loops

® Excitations will be violations of the g.s.
conditions, such as broken loops




Ground State Conditions/Hamiltonian

1. Wavefunctions on multi-loops, invariant under smooth
deformations of the loops.

v de| - ¥|ide

Expected for any topological phase.

Can be imposed by including a term in /
o such as A, , suitable plaquette termes.




2. A “fugacity’ for small, contractible loops
- e
‘I’[Q&iﬁg - ‘I’[Q&éj@

d=1 in Kitaev's model

Such a relation is needed to have finite
g.s. degeneracy on the sphere.

Can be imposed with a plaquette term in // P 4574



3. Invariance of the wavefcn. under a ‘surgery’ rel.

e.g. in Kitaev's model
L S ‘P[Q‘Z(&?ES’]

Without such a rel., infinite g.s. degeneracy
even on the torus.
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Consistency Conditions for Quantum Loop Gases

If d # 1 the surgery rel. must be modified
TR LT O TR O DS S (A

Hence, we must look for surgery relations
involving 3, 4, ... curves

Important Mathematical Result: for
almost all d, there is no consistent
surgery relation.
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Jones-Wenzl Projectors

Consistent surgery relations can only be found for

‘d 2'E""B(k+2)

eg.for d = V2

Pirsa: O



Non-Abelian Statistics Made Easy

For d # 1 the order of braiding ops. matters

; % - N N — F Y
e g k_ 4 - - ™ e =) e - e —e b2 = " w)\'e
_; w15 - v = D J
- - o = _ : hy

. . Y i, Y Y
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|. Given n quasiparticles at fixed positions, there is an
exponentially-large set of degenerate states 7,
withhaer—1,2. ... ¢

2. Braiding particles 7 and j transforms:

YVa — i\[ab U

3. Braiding particles j and k: NV,
which need not commute with A,

4. For a large class of states, braiding operations
fttffplement all of U(g) to desired accuracy.
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Effective Field Theory

The effective field theories are gauge theories.

Topological properties from the generalized
Aharonov-Bohm effect.

Relation to combinatorics of curves: Wilson loop
operators.

Unoriented curves: SU(2). Other gauge groups:
oriented, labeled curves in trivalent graphs.




Doubled Chern-Simons/BF Theory

e PTl-invariant action:

i / \ 4
/ -f'_[‘r}r"tl' ( e S :;,"” g M) - = AN AN ] = I—{H,._ (1+¢) 1"!.|:-,_‘|.r[ @ | J
\ iy J 0 /

.\I —

oS | o

Wily] =tr (’Pf £ et "”)

® Wilson loop operators act pictorially:
W [v| ¥[8] = ¥[F»7] Ula] = A¥[a’] + A~ ¥[a”]

A=1texpl(mi/20k + 2))
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® We now have some understanding of the
what (are top. phases) and why (are they
useful).

® The open question is when (do they
occur).

Where should experimentalists
look for such phases?




/——\ ‘ How?

Pi

IIIII

When Will Such Phases Occur?

* i

- el

? ll? .?* '

: 04110007

(
_-———'m

Short Scales: electrons/spins
at points (0-D)

Simple spin/dimer Hamiltonians

Intermed. Scales: fluctuating loops (1-D)

L ng scales: deg. g.s. on genus-g
surfaces (2-D)y™™




Fluctuating Loops and d-isotopy

r -. 1 ) T I oy ! l {) l oy !
e =Y (14 IT o) + X[ 500 B0+ ROFD)' - 372 - 5D

i :_\‘.1 | i

+(FNY'F'+ FYF)Y' —F!' —(F))' + (F2)'F2 + F2(F?)' - F2 — (F?%)'
1

HEY R Ry ()

with F) =o0,0,0;0,0.0, etc.

L 4 ‘} ; -
H = E A;n; + Uy n; SRt
t_ * - - - .

L 2 - - L - £l L
+( E n;n; + E Viinin; s e
- L ] - - - - -

it.jr—:ilt‘:{. ;:_,i'.—:h-m'ti:"

= : :
- f,",i,{;{j,'—{}(,']‘-Rlﬂg.  VAVA VA -
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When Will Such Phases Occur?

e S . Short Scales: electrons/spins
B at points (0-D)

Simple spin/dimer Hamiltonians

@ Intermed. Scales: fluctuating loops (1-D)
T ke i - i

m ‘ How?

L ng scales: deg. g.s. on genus-g
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Fluctuating Loops and d-isotopy

e Z(‘ + 1] o ) +3° Hcrif +FY(FY)' - ifr ~ %,[F;;*a"

I :_\l‘l‘ I ; p

HRY S PRy P (R (Y 0Ny ()

8Ll el oyt b o9

with F) =o0,0,0;0,0.0; etc.

: " . . = @ .- @ =
H = E Ain; + Uy E n; R N e
;_' i - . - - .

- - & =
- E n;n; + E Viinin; EE ks A

if.jl—:iu':{. it-,i}{hu“’tit*

T 1 :
~ h!uf”——f}f,-l—ﬂmg. \Va -
/ 7 -~
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Fluctuating Loops and d-isotopy

.= Z (__l - H o ) X Z [f!l_, (F® -’i‘].‘;f 3 1_”( Fff'}'_ 3 %F“ o 5(1’?;,}'};

ieN(v) : p

HEY) Fy + FY(B)) —Fy —(B)) + (F3) PR + F(F) —F2 —(F3)

_._(F;}fF;.f 73 F;HF:)T = Fpi = (Fﬂi)T'

with F) =0,0,0,0,0.0; etc.

H=) Am;+Up ) n}

+{ E n;n; + E Viinin; e
- - - - - - -

(2.7 )€hex. (1.7 )Ebowtie

r 1 1 .
- f;‘,tfffj-—{jl’,'l‘-Rlllg. \Wa :
£ ._7 .
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® |t is relatively easy to construct models
which impose the first two defining
conditions for these topological phases
(d-isotopy).

® The third condition (JW) is complicated; it is
unlikely that a real Hamiltonian will impose
precisely this condition. How much margin for
error is there? Are these phases experimentally
relevant?

® As we will see, d-isotopy is critical. Answering
these questions involves understanding the
instabilities of and the phase diagram near this
=omowr critical point.




d-isotopy: from here to criticality

The Hamiltonians of the previous transparency
describe fluctuating loops controlled by d-isotopy.

For d < V2 these Hamiltonians are critical

o see this, note that | )_[¥[a]|® = ) d*" = Zo,)(x = n)

Cx

at n = d*

i N N i I\ fa s
Z{..}'ll.ll:*r:l — / Hilt’{ H"l -+ .,E'}}f . .kf!J, | = Z (—) 0
. I
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This stat. mech. model is in its low-T phase,
which is critical.

Loops meander over long-distances parameterized by exponents

i 1 ' : , :
ke = 'EL-- —;:1 9)- where n = —2cos(ng)

Consequently, we can define long’ so that the trial wavefunction

[Ty) = ) d*|a)— Y d"*|a)

acX acyY
where X = configs. with long loops; Y = without, satisfies (W W) =0
E config. without config. with
{qul ‘11{1 -1S0 | ‘1’1 1} =0 A S —
Y X

because / doesn't connect
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Stability of this Critical Line

® How many relevant perturbations’

® Jo what phase(s), apart from the desired
topolgical phase, can they lead, i.e. what
else should we be looking for in
experiments’

Pirsa: 04110007




Stability of this Critical Line

® How many relevant perturbations’

® To what phase(s), apart from the desired
topolgical phase, can they lead, i.e. what
else should we be looking for in
experiments’

To answer these questions, we would like an
effective field theory for this critical line.

2,

Critical SU(2) gauge theory, w ~ k

B Continuously-varying exponents



Combining these requirements, we guess

E - — == FE = 1
o = /f}'_!'f'h— (L:I()r_“lzl " ‘{:;DEL? =S ;L:’D_Lzl —_ ; B’IB‘;)
g% . g - |
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Combining these requirements, we guess

: Bt Fia e : §$ 1
S = i /t‘f-.f' dr (L:I()-:lll -+ :1;:DEL:I —+ ;LEID-L? 2 ‘;B” B”>
i Z 2

But is this interacting theory actually critical?
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Combining these requirements, we guess

E i : =
S=— / d*r dr (L- 9. A? + A3D;E? + E!D*E? + =B° B“)
g~ . ps

But is this interacting theory actually critical?

At one-loop, dg
— =

dii
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Conclusions

® Hamiltonian ==& Topological Conditions ==
Ground State =2 Statistical Mechanics ==&

Low-Energy Excitations.

® Perturbing from tractable models to realistic
ones. (short-distance physics).

® [nstabilities of the d-isotopy critical line
(long-wavelength physics - field theory).

® Application to quantum computation.
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Conclusions

® Hamiltonian ==& Topological Conditions ==
Ground State =2 Statistical Mechanics ==&

Low-Energy Excitations.

® Perturbing from tractable models to realistic
ones. (short-distance physics).

® |nstabilities of the d-isotopy critical line
(long-wavelength physics - field theory).

® Application to quantum computation.
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Fluctuating Loops and d-isotopy
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This stat. mech. model is in its low-T phase,
which is critical.

Loops meander over long-distances parameterized by exponents

'F; ) l ' P / \
ke = —lf;- ;:I 9)- where n = —2cos(mwg)

Consequently, we can define long’ so that the trial wavefunction

Ty) = Y d™|a)— ) d"|a)
acX

acY

where X = configs. with long loops; Y = without, satisfies (Vo W) =0

' _ config. without config. with
!:; w 1 ‘ [1(1 i'.'"-*{} | lp 1 _1.} s (] larse lm}p:-u large llhlpﬁ
1 X

because / doesn't connect
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