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Problems with locality in LQG:

Several speakers have refered to issues with locality
In LQG and other approaches such as causal sets.

The basic worry Is that when we study spin foams and
weaves we Impose locality because we believe in it.
But this Is not forced by the theory. We could make
other choices that introduce arbitrary amounts of
non-locality.
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Do weaves have to be local?

A state |W> Is a weave for a metric q,, If the <>'s of areas
and volumes coincide for large regions with the classical

values: _ _
< U|A[F||T > alF] + O(—2
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Do weaves have to be local?

A state |W> Is a weave for a metric q,, If the <>'s of areas
and volumes coincide for large regions with the classical

values: | _
< U|A[F||T > alF] + O(—2
( a|F )
' 3,
< U|V[R|¥ > v[R] + O(—
(VIR (P f”R.)
Regular graph state: I" be a graph, all edges have spin |
all nodes Intertwiner | r,5,1>

Local weave: all links connect nodes of order I, apart in q_,
Superpased weaves:

s . 1T A ~, . T‘ f-'.-'j
P AR ey o Y b Leu W
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Do weaves have to be local?

A state |W> Is a weave for a metric q,, If the <>'s of areas
and volumes coincide for large regions with the classical

values: | |
< UIA[FIT > alFl + O(=E
( a|F )
’ 13,
< VIVIR IV > YL ) — )
bIV[R]|T ( R +0(—%
Regular graph state: I" be a graph, all edges have spin |
all nodes Intertwiner | 5.1 >

Local weave: all links connect nodes of order I, apart in q_,
Superpased weaves:

- . L - ~ T‘ f,'_.'j
Fa K RN b Lea K
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Do weaves have to be local?

A state |W> Is a weave for a metric q,, If the <>'s of areas
and volumes coincide for large regions with the classical

values: | _
< VAIFIIV > alF1 + O il
( a|F )
' 3,
< UV[RIIT > v[R] + O(—
(VR (P fﬁm)
Regular graph state: T" be a graph, all edges have spin |
all nodes Intertwiner | r,q5,1>

Local weave: all links connect nodes of order I, apart in q_,
Superpased weaves:

v _1ITY A ~, T‘ f.'_.'_]
Fa X RS b Lea K
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Do weaves have to be local?

A state |W> Is a weave for a metric q,, If the <>'s of areas
and volumes coincide for large regions with the classical

values: _ _
< U|A[F||¥ > alF] + O(—2
( a|F )
' 3,
< U|V[R||¥ > v[R] + O(—
(VIR (P fﬁm)
Regular graph state: I" be a graph, all edges have spin |
all nodes Iintertwiner | 5,1 >

Local weave: all links connect nodes of order I, apart in q_,
Superpased weaves:

v _1TY A ~, T‘ f.'_.'_]
L o "B b Lbea K
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Do weaves have to be local?

A state |W> Is a weave for a metric q,, If the <>'s of areas
and volumes coincide for large regions with the classical

values: | .
< UIA[FIT > alFl + O(=E
( a|F )
' 3,
< VIVIRIV > Y ) — )
bIV[R]|U ( R +0(—%
Regular graph state: I" be a graph, all edges have spin |
all nodes Intertwiner | r,5,1>

Local weave: all links connect nodes of order I, apart in q_,
Superpased weaves:

v _1TY A ~ T‘ f.'_.'_]
Lo s TN E b Lea K
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Solutions: Bombelll weaves:

.
- ) ) ;. =
U>=)Y Y ayl,jl> j=3 1€Va1s

" Is a dual spin-net of a random triangulation of g,,.

<V ViG+O¥> . _ 4 (727
< lT.F 1) lTj ~ e _-%'. '12' |

Y E ¥ VN ST
¥ o o NN

L2
=~
_.i.b“ STAN

A

P

, g
il
o

- _.—-'_.
d -
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Solutions: Bombelll weaves:

.=
. E E “r_.'..lr _] — 1
U>=Y" N 51> j=4 1€Vasis

" Is a dual spin-net of a random triangulation of g,,.

<VUl\/iG+ )T > O — /3 74920\ 1/
< Ylolg = . 3552 _

. £ 7 \ -y
H. § 2 = e IIII. H"-.
ST S
n S h ) .
LS < r

- _.—-'_-
. -
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Pirsa: 04100055

Solutions: Bombelll weaves:

1 Je

" Is a dual spin-net of a random triangulation of g,,.

< V|30 + 1)|¥ > C — /3 74920\ 1/°
< Ylol = : 3552 |

ey 7 RN RO
! | — QY

- / y 35—

AN S

- _.—-'_-
4 -

q
e

)

PN

I I

'ﬁ-

.
) ) ;.

o —1
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Solutions: Bombelll weaves: x

[ 7 Yj ;3:}. I i | 1 Je

1 TeVyy44
" Is a dual spin-net of a random triangulation of g,,.
< W|y/3(7 +1)|W¥ aa [ T2
o > : P )
< / AL AT
{ — x I"., | |

/ N\ J ..- i 2



A simple solution: |=1, superposition of |=0, 1 2:

Eg e 2 R
v: Q3144 314/2 o P a3iA ]
A T TR, T L T

N 7
L g s e S T T ST e i s R

Satisfies: . -
< WAF|Y > (’s F| + Of —,J )

|

-+ u@W energy fermions moving on I' propagate as If they are+n

+l"\j"\ .ﬁﬂl"\+;ﬂl 11 1 VSN flﬁ;;ﬂ.ﬁr“l l"\lf rF o |

< WVIVIRIV > (f' K ()| . R



A simple solution: |=1, superposition of |=0, 1 2:

Eg e 2 e
v: Q3144 314/2 a2 a3iA
A G R, T T

N R
LA G E e e S R T ST S Wt T R

Satisfies: . :
11.1 ..J( _,-'L Il, (”‘ Jr_ {). I-' Pl )

|

-+ u@W energy fermions moving on I' propagate as If they are+n

+l"\j"\ .ﬁﬂl"\+;ﬂl 11 1 VSN flﬁ;;ﬂ.ﬁr“l l"\lf rF. |

< WVIVIRIV > (f' K ()| = R



A simple solution: |=1, superposition of |=0, 1 2:

ECO e 2 B
v Q3144 314/ o P a3
A G TR, W L T

N 7
G E e S e T T S W T et

Satisfies: . :
11.1 ..J( _,-'L Il, (”‘ Jr_ {). I-' Pl )

|

-+ u@W energy fermions moving on I' propagate as If they are+4n

+l"\j"\ .ﬁﬂl"\+;ﬂl 11 1 VSN flﬁ;;ﬂ.ﬁr“l l"\lf rF. |

< VIVIRIV > (f' K ()| = R



A simple solution: |=1, superposition of |=0, 1 2:
) SR N S c

, . l
" B L SRS Ly Y, 11|

—
L g e e S R T ST W T

Satisfies: . 18
< VIAF||Y > alF )P
it o ( { »f)

- u@W energy fermions moving on I' propagate as If they are+4n

[ e T Aﬁ;;ﬂﬁr“l l"\lf rF. |

=
< VIVIRIIV > (f' I ()| = "R
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A simple solution: |=1, superposition of [=0, 1 2:

S S g s
v: Q3144 314/ 7
A R G TR, T, L T

N 5
A g En o e Rl T ST S T T et

Satisfies: . -
11.1 ..J( _,-'L 1l, (”‘ Jr_ {). I-' Pl )

|

-+ u@W energy fermions moving on I' propagate as If they are+n

+l"\j"\ .ﬁﬂl"\+;ﬂl 11 1 VSN flﬁ;;ﬂ.ﬁr“l l"\lf rF. |

< WVIVIRIIV > (f' K ()| = R



A simple solution: |=1, superposition of |=0, 1 2:

ECO e 2 S
v Q314/4 314/ o l? a3iA
A B T, T, O T

N 5.
L g F e SR R T ST e T e Rt

Satisfies:

. 'i'_:;:
11.1 ..Jt _’,Jr— 11, (”. J.r_ {Ju i )

-+ u@W energy fermions moving on I' propagate as If they are+4n

+l"\j"\ .ﬁﬂl"\+;ﬂl 11 1 VSN flﬁ;;ﬂ.ﬁr“l l"\lf rF. |

e
< VIVIRIV > (f' K ()| = "R



A simple solution: |=1, superposition of |=0, 1 2:

ECg e 2 e
v Q3144 314/2 a2 a3
A G R, T O e

N 5
BPERSANS s e

Satisfies: . ;
11.1 ..J( Jr_ 1l, (-’5 Jr_ {,;'. I-' Pl )

|

-+ u@W energy fermions moving on I' propagate as If they are+4n

+l"\j"\ .ﬁﬂl"\+;ﬂl 11 1 VSN flﬁ;;ﬂ.ﬁr“l l"\lf rF |

< VIVIRIIV > (f' K ()| . R



A simple solution: |=1, superposition of |=0, 1 2:

S S N E—
v Q314/4 314/2 a2 a3
A G TR, T O T

N e
A s e S P T ST S i s et

Satisfies: . :

|

-+ u@W energy fermions moving on I' propagate as If they are+4n

+l"\j"\ .ﬁﬂl"\+;ﬂl 11 1 VSN flﬁ;;ﬂ.ﬁr“l l"\lf rF. |

< VIVIRIV > (f' K ()| = R



A simple solution: |=1, superposition of |=0, 1 2:

ECO e 2 S
v: Q3144 314/2 i 2
A A G TR, T A0 T

N s
L G o e S R T ST 0 Tt T et

Satisfles:

. 'i'_:;:
11.1 ..Jt _’,Jr— 11, (”. J.r_ {)u I'.' )

|

-+ u@W energy fermions moving on I' propagate as If they are4n

+l"\j"\ .ﬁﬂl"\+;ﬂl 11 1 VSN flﬁ;;ﬂ.ﬁr“l l"\lf rF. |

< VIVIRIIV > (f' K ()| = R



A simple solution: |=1, superposition of |=0, 1 2:

ECO 42 ST
v Q3144 314/2 a2 a3
AT G TR T AT T

N o
L g e S R R T S T T e

Satisfies: . s
< U A[F||¥ > (,E;,L- O(-1 )

|

-+ u@W energy fermions moving on I' propagate as If they are+4n

+l"\j"\ .ﬁﬂl"\+;ﬂl 11 1 VSN flﬁ;;ﬂ.ﬁr“l l"\lf rFo |

< VIVIRIV > (f' K ()| = R



A simple solution: |=1, superposition of |=0, 1 2:

el e e c
e l

" B G L SRS Ly Y, ay1]°

—
LA g Fos e S P e ST S W s R

Satisfies: . L5
W[ A[F)| W ( ( F)

- p@W energy fermions moving on I' propagate as if they are-4n

[ e T Aﬁ;;ﬂﬁr“l l"\lf rF |

=
< VIVIR|IIV > (f' K ()| ” "R

+l‘\.ﬁ .ﬁ.ﬁl"\+;l"\llll



A simple solution: |=1, superposition of |=0, 1 2:

ECO fe 2 e
v: Q3144 314/ i e
AR G TR, T O T

N 5
LA G e S e T T S i W Rt

Satisfles:

. 'i'_:;:
11.1 ..Jt _’,Jr— 11, (”. J.r_ {)I I'.' )

|

-+ u@W energy fermions moving on I' propagate as If they are+n

+l"\j"\ .ﬁﬂl"\+;ﬂl 11 1 VSN flﬁ;;ﬂ.ﬁr“l l"\lf rF. |

< WVIVIRIIV > (f' K ()| = R



But a insert a non-local state for one of the components

0. 16 20 R
v: 03144 314/2 o P 134
£, R ST I P

il = = v\ﬂ\\q\\\\q\@ﬂ
5 S0 MM R0, W S T
Satisfies: : B
< | A[F)| U > ( F] + O F )

3
I a— (,. R] +O(-E, )

B UL @ fermion moving on I exhibits non-locality as twa.e s«

e P = R S T = e—— e [ PRI (e



But a insert a non-local state for one of the components

0. 16 20 .
v: 0314/4 314/2 a3
SR S G T P

= = v\ﬂ\\q\\\\q\@ﬂ
o Sl MU VR, M R T
Satisfies: : e
< | A[F)|U > ( F] + O ;r )

I3,
< U|V[R||¥ > (f' = ”!',,- !R )

o3 UL @ fermion moving on I exhibits non-locality as twa.essss

~temem At mtE o~ = e e—— e [ PRI [



But a insert a non-local state for one of the components

0. 16 20 AP
vi 03144 314/2 o P 134
£ SR ST T S

1l = = ’\ﬂ\\\\\\wﬂ
n Sl YRR a0, W e T
Satisfies: : s
< | A[F)|U > ( F] + O ;r )

13
< GIDIRIG > (,. R O(- !R )

+omoBUL @ fermion moving on I exhibits non-locality as twa.ess

e P (- B S e e—— e [ PRI (e



But a insert a non-local state for one of the components

2O 1628 G e
vi 03144 314/2 o P 1A
o R R O P

1l = = v\ﬂ\\q\\\\q\@ﬂ
o S O e, W S
Satisfles: : B
< U|AF||T > ( Fl + Of rF )

13
o e SR (,. R| + O£, )

B UL @ fermion moving on I exhibits non-locality as twa.e s

P R [P S S = e —— e [ PRI [



But a insert a non-local state for one of the components

0. 10 20 A
v: 03144 314/2 aqf A3
g, MR A e S

= = ’\ﬂ\\\\\\wﬂ
5 S0 TRME R, W S S
Satisfies: : B
< | A[F)|U > ( F| + O ;r )

13
< GIVIRIG ~ (,. R . O(- !R )

B UL @ fermion moving on I exhibits non-locality as twa.e s

~temem At mE o o~ e ee—— e [ PR TP (i



But a insert a non-local state for one of the components

;0. 10 20 S
v: 03144 314/2 s P 134
S, R T TR S

Gl = = v\ﬂ\\q\\\\q\@ﬂ
5§l AU, M R S
Satisfies: : £
< U|AIF|U > (.es}' ”—,_r)

3.
< U|VR||V > (f' . ”!',,- !R )

o3 UL @ fermion moving on I exhibits non-locality as twa.e s

~1temem At mE e ep— e [ PRI (i



But a insert a non-local state for one of the components

L0 10 20 s
v: 03144 314/2 PR S
o, R ST R P P

1l = = v\ﬂ\\q\\\\q\@ﬂ
5 SRl TR S0, W P R
Satisfles: : b
< | A[F]| U > ( F] + O ;r )

13
< GIVIRIG > (,. R O(- !R )

B UL @ fermion moving on I exhibits non-locality as twa.esuss

e P (= B S e ee—— e [ PP TIIP (e



But a insert a non-local state for one of the components

;0 10 20 A
v: 03144 314/2 o B
£, R SR O P

= = v\ﬂ\\q\\\\q\@ﬂ
. SGEhen TR S, W S R
Satisfies: : £
< | A[F)|U > ( F| + O F )

13
ey (,. R] +O(-E, )

o3 UL @ fermion moving on I exhibits non-locality as twa.e s

~temem At mE T o~ e e—— e [ PRI (e



But a insert a non-local state for one of the components

0. 16 20 T
v: 03144 314/2 a3
N N N

= = ’\ﬂ\\\\\\wﬂ
a Y% TR R, W S T
Satisfies: : £
< | A[F)|U > ( F| + O ;r )

13
< VDRI > (,. R O(- !R )

o3 UL @ fermion moving on I exhibits non-locality as twa.e s

ke At mE T o~ = e —— e [ PRI [



But a insert a non-local state for one of the components

LG T T S
v: 03144 314/2 af A3
P S T S B

1 = v\ﬂ\\q\\\\q\@ﬂ
. SEEA TN S, Ui e N
Satisfies: : B
< | A[F)|U > ( F] + O ;r )

-
< U|VR||VT > (f' : ”!',,- !R )

o3 UL @ fermion moving on I exhibits non-locality as twa.ess

~1temem At mE o~ e e—— e [ PP TIP (



But a insert a non-local state for one of the components

g T2 R
v: 03144 314/2 o P 134
S R AT T S

il = = ’\ﬂ\\\\\\wﬂ
5 S0 TR VE R, W S e
Satisfies: : B
< | A[F)|U > ( F| + O ;r )

[3.
< U|VIRIIV > (f' 3 ”!',,- !R )

o3 UL @ fermion moving on I exhibits non-locality as twa.essss

~itemem At mE = e ee—— e [ PRI (e



But a insert a non-local state for one of the components

0. 16 20 e
v: 03144 314/2 o P 134
i, R A TR P

|l = A = v\ﬂ\\q\\\\q\@ﬂ
n SRl TR VR, Wi S S
Satisfies: : B
< | A[F)| U > ( F] + O ;r )

13
< GIDIRIE > (,. R - O(- !R )

B UL @ fermion moving on I exhibits non-locality as twa.e s

e P = v Y = p—— e [ PRI [



But a insert a non-local state for one of the components

0. 16 20 R
v: 03144 314/2 o P 134
O, R T O P

1l = = ’\ﬂ\\\\\\wﬂ
5 S50 TR VR W R T
Satisfies: : B
< | A[F)|U > ( F] + O F )

13
< GIVIRIG > (,. R O(- !R )

o3 UL @ fermion moving on I exhibits non-locality as twa.e s

e P (= R S e e—— e [ PRI [



But a insert a non-local state for one of the components

S A e
v: 0314/4 314/2 o P 1A
N, SR ST R S

1l = = v\ﬂ\\q\\\\q\@ﬂ
5 S0 TR, W R S
Satisfies: : L
< | A[F)| U > ( F| + O ;r )

3.
< U|V[R||T > (f' = ”!',,- !R )

o3 UL @ fEermion moving on I exhibits non-locality as twa.essss

e P = e S P e e—— e [ PRI (e



But a insert a non-local state for one of the components

O e 2 .
v: 0314/4 314/2 o P 134
P O T ST B

il = = ’\ﬂ\\\\\\wﬂ
. S TS, Wi N
Satisfies: : £
< | A[F)|U > ( F] + O F )

[3.
< U|V[R||¥ > (f' - ”!',,- R )

B UL @ fermion moving on I exhibits non-locality as twa.e s

~temem At mE o~ e —— e [ PP (e



But a insert a non-local state for one of the components

;0. 10 20 o
v: 03144 314/2 o f 43
N, S ST U S

| = = ’\ﬂ\\\\\\wﬂ
a0 TN R W R W
Satisfles: : B
< | A[F)|U > ( F] + O ;r )

13
RS SR (,. R] +O(-E, )

o3 UL @ fermion moving on I exhibits non-locality as twe. wss

e P = e S P = e —— e [ PRI [



But a insert a non-local state for one of the components

;0. 10 20 e
vi 03144 314/2 o 434
U I Tl S B

1l = A = v\ﬂ\\q\\\\q\@ﬂ
. SEA TS, Vs N
Satisfies: : B
< | A[F]| U > ( F| + O F )

13
< GIVIRIG ~ (,. R - O(- !R )

o3 UL @ fermion moving on I exhibits non-locality as twe. o

e P (= R S e e—— e [ PRI [



But a insert a non-local state for one of the components

;0. 10 20 e
vi 03144 314/2 o P 134
S R SR T P

|l = = v\ﬂ\\q\\\\q\@ﬂ
5 Sl TR R W R S
Satisfies: : £
< | A[F]| U > ( F] + O ;r )

13
< GIVIRIE ~ (,. R O(- !R )

o3 UL @ fermion moving on I exhibits non-locality as twe. wss

~1temem At mE o~ = e e—— e [ PRI (e



So the weave conditions do not imply locality.

There seems nothing that guarantees that microscopic
locality defined by the connectivity of a given spinnet
goes over Into locality of a semiclasical or coherent state
from which classial geometry would emerge.

Similarly there is nothing that seems to guarantee that
causality of spin foams goes over to causal structure
of classical spacetime In the low energy limit.

Furthermore, there is a problem suppressing non-local
links, as there are potentially so many more of them.

Pirsa: 0410005
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The inverse problem for discrete spacetimes:

Its easy to approximate smooth fields WI’[’] discrete structures.
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iiiii

The inverse problem for discrete spacetimes:

Its easy to approximate smooth fields Wlt

: 04100055
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iiiii

The inverse problem for discrete spacetimes:

lts easy to approximate smooth fields Wlt

: 04100055
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iiiii

The inverse problem for discrete spacetimes:

Its easy to approximate smooth fields Wlt

: 04100055
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The inverse problem for discrete spacetimes:

lts easy to approximate smooth fields with combinatoric structures.
s ey f”f’_—_ﬁ“\
ol o= N

EX N

e 2
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But generic graphs do not embed in manifolds of low dimension,
preserving even approximate distances.
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The inverse problem for discrete spacetimes:

lts easy to approximate smooth fields with combinatoric structures.
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But generic graphs do not embed in manifolds of low dimension,
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The inverse problem for discrete spacetimes:

lts easy to approximate smooth fields with combinatoric structures.
M ey f”f’_—_ﬁ“\
ol =0 N

EX N

eE 2

I“‘xﬁ____h_ ]

But generic graphs do not embed in manifolds of low dimension,
preserving even approximate distances.
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The inverse problem for discrete spacetimes:

lts easy to approximate smooth fields with combinatoric structures.
T Ry f”f’_—_ﬁ“\
ol o NoY

EX N

e 2

I‘H,q___—_ T

But generic graphs do not embed in manifolds of low dimension,
preserving even approximate distances.
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If locality is an emergent property of graphs, it is unstable:

I": a graph with N nodes that has only links local in an

embedding (or whose dual is a good manifold triangulation)
In d dimensions.
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If locality is an emergent property of graphs, it is unstable:

I': a graph with N nodes that has only links local in an
embedding (or whose dual is a good manifold triangulation)
In d dimensions.

L ets add one more link randomly.

Does It conflict with the locality of the embedding? i

d N ways that don't.
N? ways that do.

Thus, If the low energy definition of locality
comes from a coarse graining of a combinatorial
graph, it will be easily violated In fluctuations.
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We have found so far four applications of such a conflict
between micro and macro locality:

1. matter fields from gauge fields + non-locality

2. large macroscopic corrections to the low energy
limit (MOND-like effects)

3. Cosmological implications (microscopic
derivation of bi-metric or VSL theories)

4. Hidden variables theories of quantum mechanics
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Model: trivalent spinnets (2+1) with local moves.
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|_ets look at this in detall:
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\We have to do this twice to reproduce the pure gravity move:
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Interactions come from moves that are local microscopically,
but non local macroscopically:

A spin-1 boson:
112
/2
BB

1/2
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Interactions come from moves that are local microscopically,
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A spin-1 boson as a non-local link w/ |=1
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Interactions come from moves that are local microscopically,
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Interactions come from moves that are local microscopically,
but non local macroscopically:

Locally this looks like: Soif the pure gravity amplitude is:
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L The amplitude for matter interaction
3 comes from the pure gravity evolution
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“Matter without matter” JAW

*\Works also when coupling to gauge fields are included.
Just l[abel edges by reps of SU(2) X G.

*Pair creation possibly implies spin-statistics connection.
Dowker, Sorkin, Balachandran.....

Col . W Py same for CP, T etc
*Does CP breaking in matter imply CP breaking in gravity?

Ve get a tower or particles of increasing spin, just like
Regge trajectories in string theory.

*This gives a unification in which fermions appear in
fundamental representations of gauge groups-
ok [KE SUSY where they appear in adjoint reps-

l"ll I+ I;I.J'ﬁ HH+I 1 P~
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Note: Pis small. To explain matter inside the horizon:

N, ..~ 10180 N_,~N,.... ~10%

nodes baryon

P=N, /N2 ..~ 10250

nnl

Nnn/Nfucaf 5y 10-100

To rule this out we need dynamics to insure the
ground state is local to this precision.
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Evidence for non-local ettects in very low energy astrophysics:

The Tully Fischer Relation:

eGalaxies have flat rotation curves, with velocity V.
*Total luminosity L astro-ph/0204521
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There is a critical acceleration
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MOND proposal

ay= 1.2 10-% cmisec® ~ c?/L
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MOND proposal

There is a critical acceleration a,= 1.2 10°% cml/sec’ ~ /L

= 12
a<a, a=(a,a,)
crifical radius where a=a, re = VGML = \/ RschwL /2

r>r,  VIr=(GMa,)"?|r w v'=GM a,

[
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MOND proposal

There is a critical acceleration a,= 1.2 10% cml/sec’ ~ ¢/

e 112
a<a, a=(a,a,)
crifical radius where a=a, re = VGML = \/ Rschwl/2

r>r,  VIr=(GMa,)"?|r w v'=GM a,

[

The MOND potential: ~ “oxp(r) = v Gilag [ln(—) —1
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*The MOND formula does embarrassingly well!

eDark matter calculations do not do nearly as well:

eDon’t account for Tully-Fischer
*Have cusps, dark matter should dominate in the
centers of galaxies, but in the data they don't

*Doesn’t explain the occurrence of an acceleration scale
as the threshold for breakdown of Newton's laws with

visible matter.

*Doesn’t explain why it involves A.
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Bimetrics for graphs:
r., = distance between n and m in metric q_,.

«The weave can be chosen so the graph metric matchesr,_

probability that nodes n and m are connected if they are a distancer
apart in the metric q_,

:> 2 (') minimal expected graph distance between twonodesr apartin g,

-""—.# = = = = %_—_=z"" = # = __# = = ¢_
f'%# = ——r = = = = = = — = e e e e
= = = = et = = ==
: = = - ;# — = Page 270/306
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Prob of path w one jump: ( 1_ ) Py

We want z st the prob from

. [ A7reze
a region around n and m are A ( _
so connected. This means

This gives

E Z \
27 (NP(r)/ | |

When this is true

J

(I T
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= |
| = 2z(r) + 1

This tells us the relationship d(r

between P(r) and d(r)
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*Qur physical ansatz requires that qi.-MOND(I‘) = -GM/ d(!‘)

-Mond: éronp(r) = V/GMag |In(—) — 1

*Our calculation found: ;1 |

These imply: | ., _ (_ ) {1“; 1];
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So there iIs a wormhole distribution that leads to MOND
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Other consequences of non-locally decorated weaves:

Quantum mechanics from the classical statistical
mechanics of such weaves.

«Coarse graining leads to bi-metfric theories, possible
relevance for early universe cosmology, inflation etc

Dreyer, FM in progress
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Matter without matter

e LOG naturally unifies gravity and gauge fields. Just label
spin networks with colors from SU(2) X gauge group.
» Nonlocal links naturally add matter fields
e Particles of all spins (like strings!!!)
* Matter propagation amplitudes come from pure gravity dynamics
* Matter interactions also determined by pure gravity dynamics.
e (CPT, CP matter determined by gravity amplitudes.
* No free parameters from compactification etc (unlike strings!!!)
e Spin 1/2 particles arise in fundamental rep  (unlike SUSY!!)

MOND

* Nonlocal links can imply new macroscopic effects.
»  MOND requires non-local physics.
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