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2 A look to proposed ideas on the transition
to classicality

Standard Decoherence

Decoherence without Decoherence
Squeezed States
Alternative to Inflation

Issues

1) Is there a measurement involved in the transition from a field characterized
by a quantum state to the ensemble of realizations described by the stochastic
field?

2) If so, what is performing the measurement?

3) Precisely, what is the set of quantum chservables that is being mea-
sured? and what determines them?

4) When is this measurement taking place, and does the answer to this
question have any possible observational consequences?
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The standard view, supplemented by the physical col-

lapse hypothesis. o a1y w0 0| H8A B

3 Linearized Einstein’s equations and the evo-
lution of small fluctuations

2 21 7 nyg.2 , e il
ds” = a(n)” [—r_i + 20 )dg* + (1 — 3‘:’;:",..:5:'(2'1“1 (12)
Let us first write down the components of the Einstein tensor (G =

R — g, R) up to first order in the perturbations:
[0} a?
Gw =3—
a?
o) e a2s
Gn. =—=—12-
as a

Gl = ov?y — 62§
a

G = 29,¥ + 2'30,4-
i

G = (V2 - 39)(®— W) +2¥ +2 (— - —) (0 + B) + 2;3(-1- + @)

) i
G =a0;(¥=2) for i#; (13)
The components of the energy momentum tensor are as follows

- 1

'Tr.\' = §(¢_‘.3_| -+ rJ.""|.':|,'-;I‘
© 1,:a e
= 5(65) — V]

-TT;:? = Ctxtff(.:ﬁ' =+ Qa:'!'l":'CJ! + GTJJ"[&:JO

T = éudidé

T3 = — @2 + dodd — W(é2 — a®V[Go)) — .—ia:'('l;l (GLE

{1] s g 2
T3 =0 for i#j (14)
Finally the scalar field equation yields, to zero order:
- ql.i STy =g
S0 +2-da+a°d,V[g] =0 (15)
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The only nontrivial amongst Einstein's cquations, to zero order is G =

8=GTy, which leads to Friedman's equ

3= = 4=G(¢2 + 22°V[&)) (16)
a=

1) . (1) - - . -
In the linear order let us start from G.;“ = b:GT,';' which implies the metric
perturbation potential to be equal, namely

¥=> (17)

After some algebra we obtain

7Y + 437GV = 47G |¢o(d6 + ~6¢) — Godd (18)
a
I

Finally, Wllm equation for the scalar field perturbation

we obtain

252 V[glsé — 165G(éo)*56 — 20dg =0 (19)

89 +2-49 — V266 + a0
This differs from the evolution equation of the scalar field perturbations
in the background spacetime. However note that the corrections due to the
Newtonian potential are suppressed by the factor G.
Qur main equations will be then te equation for the scalar field in the
background space-time

= a: 2 5 T -
d0+2-00— V-6 +a°d, V[o]ip =0 (20)

{ —
and equation @, which, upon quantization of the scalar field perturbation
d¢ one can promote the previous equation to semi-classical equation to de-
termine W in terms of < 8¢ >.




4 Quantum theory of fluctuations

aton field is a scalar field described by the action

i8)= [ [~37-6%u60™ - Viol] vgate (2

2
Using the form of the FRW line clement the previous action becomes
Sé] = / 5 |—ochdhd + 60,0,64Y) — a'l go:] d'z (22)
|2

Separate the scalar D.O.F into an homogencous background component
%o plus small fluctuation §¢, namely

0= ¢y + 0. {i’.__‘r]

The background field ¢ is deseribed in a completely classical fashion while
only the fluctuation §3 is quantized.
In these coordinates, the field equation becomes

[ 66— v60+ 2256 =0 ( (24)

where dots denote derivatives with respect to p and A is the Laplacian on
flat Euclidean three space.

Note that we have neglected o terms proportional to 6‘3;1"[6} using the
slow rolling appraximation. T

If we expand the fluctuation in its Fourier components the cquations of
motion for the mode §¢y becomes

S +2 2 £ 1254, = (o=
Uk T & — 00 — K o =) | .;:]
a

Introduce an auxiliary field ¥ =add.

= s @ 5
;1—( e+ —)y:ﬂ. (26)

a
We will now proceed to quantize y.
Let us consider the field in a Box of side L, decompose a real classical

field y satisfying (77) into plane waves
T = 1 w o iEr - V=il | iy
yim,x) = ___'-._.l‘{l".li_'\f"_m = +1;er},£ _J . (27)
(L) s J
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i=1,2,3 with n; integers.
impose standard conmutation re ns between the field y and its

) . Thus we write

the sum is over k satisfying kL = 2=n; for
We

canonical conjugate momentum (

_—
b
[+

—

1 Pl b2 )
(0. T) = ——=Xr (6:(n)e*% 4 5t () =ik di(n) = v (n)a:
¥(m %) = % (Ga(m)e™ +al(m)e ) «(n) = me(n)as,

where y:(n) is a solution of (??) and &, is the usual annihilation operator on
the one particle space H = £3(L?, d°z). Upon choosing the solutions 1, (), 7
thus becomes an operator on the Fock space over ‘H. Similarly the canonical
conjugate to y;

Slr) (o oyl e e T A S i
2 x)=9(n5)— = §(n = (29)
a
L 3 -~ Fr = —ik an
—-””—L;. (r:-.::q(r,r]lc"‘ T+ algu(n)eE "J . (30)
where :
= a
e = Yk — =Y. (31)
a

To complete the quantization, we have to specify the classical solutions vy (n).
q b A JE\N)

To insure [@y, d;.] = hL35 4, we need
n(nFEm) —G(n)aln) =i (32)

for all k at some (and hence any) time 7.
A pair of independent solutions is given by

(%) 1 Rl E - -y
Ve () = — (l - - —) exp(xikn) (33)
3 Iy 3 )
vk 1 L %_ ._.dulél ‘I-bu) be 0 7
v oTe . unl[

Also = ~—— huiga =I}L. ey .

N 5 s ST

62 (1) = i\ exp(xikn) (34)

Note that the dimensions implied for a; is (Mass)'?(Lenght)? which is

compatible with the dimentionalized conmutator [ay, @] = AL, ..




5 Evolution of the fluctuations through col-
lapse

The collapsing modes

In the present paper, we choose the following modes:
-y o= —_taf -
e (n) == ye(n)as + Ta(n)a}. (35)

These modes arc mutually independent (i.e. commuting), they afford a de-
compesition of the quantum field into a collection of harmonic oscillators.
and, together with their canonical conjugates

=[5y N i) -
5 (1) = ge(n)ac + Fw(n)ay (36)

contain complete information about the field.

As we have to follow the evolution of the
collect some formulas for the evolution of their lowest moments: Let |=) be
any state in the Fock space of 7. Let us introduce the following constants:

nodes during inflation, let us

- 2 = F—
dy =< a; >z, Cp =< ag >z, € =< @ ay >z . (37)
In terms of these, the expectation values of the modes are expressible as

< fi >== 2Re(ydy) 20 >o= 2Re(qudy) (38)

while their corresponding dispersions are

(A%)Z = 2Re(vic) + |l (RL> + 2e4) — 4Re(ydy)? (39)

and
(A%e)z = 2Re(gic) + |gu|* (RL? + 2e1) — 4Re(qud,)? (40)

For the vacuum state |0) we certainly have d; = & = ex =0, and thus

1+
|

< i >p=0,

(41)
while their corresponding dispersions are

(AZ): = |ou]® (RL3). (42)

10




The collapse

we have to describe is the state |

W

we

10t specily the state completely,

iy =< O, - r‘: =< &: >y l';_ =< &0 >a . I:.‘.‘H
At this point a few remarks on our statistical treatment are in order.
We view the collapsed state of the ficld corresponding to our universe to

be a single state |8) and not in any way an ensemble of states,

The way statistics enters our picture is related to fact that we do not
measure dircetly and separately the modes with specific values of k. but
rather an aggregate contribution of all such modes to the spherical harmonic

decompaosition of the tempemture fluctuations on the o al sphere. In

order to procced we we construct an imaginary cnsemble of universes. Thus
we have an cnsemble of universes characterized by the after-collapse state
1©)i where the label i identifics the specific element in the ensemble. Then
lependent random series of numbers r;rf.'J pertaining to value
of physical quantities in the collapsed state in cach clement § in the ensemble

| (4}

we will have an ir

for every single i (we will be assuming there are no correlations among the
various harmonie oscillators). Qur universe however, corresponds to a single

clement ig in the cmnsemble, so for each Jr we have a number .;r."'] . The
o T — LS

point is then, that sequence
a result, also a random sequiehcr
In our specific calculation this approach will be taken with the quantitk
: In the vacuum state, §;, and : J"'] individually are distributed nccord:
ered at 0 with spread (Af)2 and (.35153];':
respectively. However, since they are mutually non-commuting, their distri-
butions are certainly not independent. In our collapse model, we do not want
to distinguish one over the other, so we will ignore the non-conmutativity and
make the following assumption about the (distribution of) state(s) |8) after
collaps

! for fixed 1o but for the full set of F will. as

\

to Gaussian distributions ccr

L=

< ii(ng) >e= X], () >a= X¢ (44)
where X’, X' are random variables, distributed according to a Gaus
tribution centered at zero with spread (Afi)32, (A -
other way to express this is

respectively.

<) > = Z(ARE = il VAL, (45)
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The collapse
What we have to describe is the state |

t specily the state completely, but only the expeet:

> collapse. At this point

ion values

we will no

I gl e € _ o =t= (4
dy =< 0 =g, € =< a; >g, €y == a a; >g . I‘-|3:|

At this point a few remarks on our statistical treatment are in order.

We view the collapsed state of the ficld corresponding to our universe to
be a single state |©) and not in any way an ensemble of states,

The way statistics enters our picture is related to fact that we do not
measure dircetly and separately the modes with specific values of k. but
rather an aggregate contribution of all such modes to the spherical harmonic
decompasition of the temperature fluctuations on the celestial sphere. In
order to proceed we we construct an imaginary ensemble of universes. Thus
we have an ensemble of universes characterized by the after-collapse state
|8)i where the label i identifics the specific eler in the ensemble. Then
we will have an independent random series of numbers g pertaining to value
of physical quantities in the collapsed state in cach element § in the ensemble
for every single i (we will be assuming there are no correlations nong the
various harmonic oscillators). Qur universe however, corresponds to a single

<ol = (i)
clement 7 in the emnsemble, so for each # we have a number g-*' . The
s — LS

point is then, that sequence ¢ for fixed 7o but for the full set of £ will, as
a result, also a random sequence. He

In our specific calculation this approach will be taken with the quantitk

: In the vacuum state, §f;, and Ei"‘ individually are distributed accord:
to Gaussian distributions centered at 0 with spread (Afi)? and (AZ2)2
respectively. However, since they are mutually non-commuting, their distri-
butions are certainly not independent. In our collapse model, we do not want
to distinguish one over the other, so we will ignore the non-conmutativity and
make the following assumption about the (distribution of) state(s) [8) after
(‘C-u.'l]ulu.'

o i

(%) >e= X7 (44)

< ii(ng) >e= X],

where X’, X” are random variables. distributed accord

g to a Gaussian dis-

tribution centered at zero with spread (Afi)3, (A An-
other way to express this is
<i(m) >e = zi\(AR) = zi|v.(nf)| VAL, (45)
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- 2B ey o = I |_\.4r I‘E = ¢ |ge(nE)| VAL, (46)

<5 M) 20 iV

according to a Gaussian distribution cen-

where zi, i are now distributed
tered at zero with spread one

We

tien

1L — 1l . ~
|d5| cos(ax +Bi) = 57, VADS,  |d|cos(ax + ) = TEVALE.  (47)

While we could solve these equations in full gc:‘.(‘mlit}'. let us make the sim-
plifying assumption that the collapse happens early, i ng| is large.
Under this assumption we find that 3 = 5, + /2 w I ence we get

T — il

di| = =vhL3r, tan(a) = —. 48
il =3 =
2 T

§

where 1, = \.-":L + z}°. Using the distribution of i, and zf, we find the
a one-sided Gaussian distribution with

uniform distribution for 7 and for =
spread one.
'\-F need to concentrate on the expectation value of the quantum operator
» which appears in our basic formula

V¥ +m* = s (49)
(where we iu'.rminccui the abbreviations m* = 42G¢3 and s ="47G¢dy) and
F=do+(2— ]‘(‘- while in the slow roll appraximation we have r'= :"G =

o
a~'z¥, We want to say that, upon quantization, the above equation turns

into

VA + m?Y = (). (50)
Before the collapse occurs, the expectation value on the right hand side is
zcro. Let us now determine what happens after the collapse: To this end,
take the Fourier transform of (50) and rewrite it as

Ui(n) = ———([W)e- (51)
F'~—:r;|

—

4

=y o L«)fp_L3
valme » O T




. an the slow roll appraxi
Let us focus now on the = P

h 4 = g1z
side, we note that o0f

1 3 h
tion and compute the right hand

—t ). (52)
ri =lue we l'i::L-".
For the expectation yalue wel

[RL3k1 =
1 vdag) =iy—-FF (53)
([';.}U = E (Lf;ﬂl'. "'{'—1:”.-} = 1\ 3 {_ }

a
- - -
CREPEL [ geatm) _ oot (54)
= :||.| - E (ILL k }

: (59)
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6 Recovering the observational quantities.

a is to recognize the fact that we can not measure
t we measure in fact is the “Newtonian
*Iff_rm, Ip) which is a function
, i.e a function of two angles.

Here a crucial observati
;. for cach individual value of k. Wt
ce of last ‘:C"ETC'HJ"

potential® on the s
of the coordinates on
From this we extract

O Ir".:'{rl:;,,fp]}},.,u':ﬂ (56)
_,\___-__—-———f

In fact the quantity that is measured is 5:.‘:{.').;} which is expressed as
E_’H(.I';.-_-\.lﬁ,n(ﬂ,',::l.

The angular variations of the the temperature is then identify with the
corresponding variations in the “Newtonian Potential” ¥,

Thus we identify the theoretical expectation ay Wwith the observed quan-
tity azm The quantity that is presented as the result of observations is
OB, = I(I + 1)C; where C; = (2 + 1)7'E.|ain|*. The observations indi-
cate that the quantity OB is independent of [ and this is interpreted as a
reflection of the “scale invariance” of the primordial spectrum of fluctuations. — "W,

To evaluate the quantity of interest we write first

s il <~ &
L@, 67 of deishics

Tr T = —
¥(m, 7) 2 — m-\, 2[3a

i

Thus using £ = Rp(sin(0) sin(;), sin(8) cos{;2), cos(#)) and standard results ¢ \L

we obtain “‘:{QD‘_"'\'
. wall iy

- IT]. \‘HE rin ibry s % 17 oy e 0
G = i5|[575=T I_Tn—'/ﬂk}n Yin(0, ) 202 (58) £ J-'«'-vwoj:.’

='1,Ll e PO RoY~E) | 69y
—_— .
where k indicates 11;1‘ direction of the vector k. Now we compute the expecte ~E{l:|-‘
magnitude of this quantity. As a first step
R anRil, oo vES -V Fu]r{m (kRp)je(K Rp)Yim (K)Yim (P
Im [ ‘_.:"'\,i.’J"_”‘L_f__ J1 p)ji(K' Rp)Yim(} ~:|}l'1("‘.}
(60) (B0

_—

N O+
@




Now we simplify by t
random phases a;. To do this, note that

ing the expectation value with respect to the

) a_w+1w))

- LJ( )

(61)
The randompess of the phases will make the off dinconal elements to caneel.
Next write the sum as an integral by noting that the values of the companents
of k are scparated by Ak, "—,.’L thus

FI,I")F[’A:,I o (:“_:':”.—'.] — r_je-ilo-stm H(I pe il

sd=h'? . k i ~ -
< aiml >= (=)L /22) Se———— 33 ((IFI Rp) | Yim (F)P (AR
< lainl? >= (s (/25 St 1R (F o) Yim B(AR)
(62)
el R o 2 5 4.
= (sn**/a)*(2/=) [ gt (RO Yim ()P (63)

The last expression can be made more useful by changing the variables of
integration to £ = LRp leading to

< lail? >= (sh'?/a)*(1/= p)? }| *ji(x)dr  (64)

which in the regime where m is negligible we find: '!

. (63)
Al +1) v

* >=(sh'/a)?(1/22) 1y (1) = (sh'*/a)?

< 19m

Now, since tlm tlnﬁ not depend on m it is clear that the expectation of
Ci = (2 +1)'Em|aim]? is just < |a|* > and thus the observational quan-
tity OB; = J'Lf-l HC‘ = (1/2)(s s/ ?/a)? independent of { and in : 1greement
with the scale invariant spectrum obtained in ordinary treatments and in the
observational studies. Now lets look at the predicted value for the obser-
vational quantity OB;. Using the equation of motion for the scalar feld in
the b 'cl groound in the slow roll approximation we have & = —"; " where
V= and the first of Einstein’s equations, in the be wckground which gives

3(a)? = __.(,u*l (¢%), we find, / E"-""G."-l-

= (2=/3)e(V/AL})) (6G)

0B = (=/ J]CLHl 2

where in the last equality we have used the standard definition of the slow
roll parameter ¢ = (1/2)ME(V'/V)?, and Gh = Mpi.
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