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I. THE ABCK QUANTUM BLACK HOLE

The classical phase space: the set of space-times containing
an isolated horizon, a location of the horizon and the area a are fixed.

In the 3+1 framework: horizon is represented by a 2-sphere S,
the bulk is a 3-manifold £ bounded by S.

The degrees of freedom:

- a U(1) spin connection defined on the horizon S

- gravitational field data in X

such that a consistency condition is satisfied ensuring that the world-
surface of S is an isolated horizon.

The quantum Hilbert space: Hyy, C Hs @ Hx

Hs: the horizon Hilbert space is understood as the space of the
black-hole quantum states. Mathematically, this is the union of the
quantum U(1) Chern-Simons theories on a punctured sphere, where
all possible sets of punctures are admitted.

Hyx: the bulk Hilbert space is described by Quantum Geometry,
consists of excitations of the 3-geometry, which define the quantum
area of the horizon.

The quantum consistency condition is equivalent to the quantum
Gauss constraint in Hs @ Hs at S.

The quantum constraints commute with the quantum horizon
area operator. All the solutions whose quantum areas fall into any
given finite interval [@ — da, a+4a] can be labeled by a finite number
of the quantum black hole states and bulk labels.




IV. Hpuys AND THE ENTROPY DEFINITION

Solving the vector constraints amounts 1o the averaging with re-
spect to the S prerving diffeomorphisms. The scalar constraint and
the Gauss are already solved on S
The physical quantum horizon states:
an orthogonal basis by, .-, b,, is labelled by all the sequences,

b‘ = lbl. b<||. bl = L‘l -’—: ::: (17)

The full, horizon-bulk physical quantum states:
Hhh_\'.‘- = @H!I'H:I'jlm. (18)

7,m

where

b; = —2m; mod k, m; € {—ji:—3i+L - Ji} Z!“ =0

The horizon area operator Ag commutes with all the constraints
in this framework, and passes to the physical Hilbert space. The
sequences j = (J1, N nE responsible for the area assigned to
the 2-surface S of the horizon by the bulk Quantum Geometry,
whereas the sequences b represent the intrinsic quantum degrees
of freedom of the horizon.

The ABCK horizon entropy 1s defined by the number of the quan-
tum horizon states |by, b, >€ Hsphys which correspond to non-
trivial subspaces H2™J™ such that

as = "5:'."-{"12 Vii(gi+1) < a. (20)
r:'L




V. A SIMPLER, COMBINATORIC FORMULATION

The entropy S of a quantum horizon of the classical area a accord-
ing to Quantum Geometry and the Ashtekar-Baez-Corichi-Krasnov

framework is

S = InN(a), (21)
where N(a) is 1 plus the number of all the finite sequences
(my., ...., m,) of non-zero elements of _'3:. such that the following

equality and inequality are satisfied:
n

Z m; =0, (22)

1=1
n : a
Z VImil(lmil +1) £ (23)

]
i—1 Su ;’rpl

where ~ is the Barbero-Immirzi parameter of Quantum Geometry.




VL. THE ENTROPY CALCULATIONS: FIRST INEQUALITIES

To find an upper bound for the number N(a) introduced in the
previous section (recall that a = 1--41, k, and k € N), define the
area-flux operator whose eigen subspaces are the spaces 'Hp’ , but
the eigen-values are given by taking the absolute value of each term

in the sum defining the flux operator, namely
-+ 171 o 2 I Fi 4
ag" = 8mylp E \m;|. (24)

Incidently, it may be argued, that this is the way area could be
quantized. Consider the set

3 I ¥ lf—- =1l - .
{(my,...,my) | 0F m; € -4, a5 < a= -ln'l.if},'k} 2

(25)
Let N;F be the number of elements of M" plus 1 (the empty se-
quence). Certainly,

S

N(@) < N} (26)
Next, since k is arbitrarily fixed integer, let it become a vanable
of the sequence (Ny, Ny, ..., N, ...). To establish a recurrence re-
lation satisfied by the sequence (N, N[, ..., N, ...), notice that if
(my,...,my,) € M, then both (m,, ...,my,, ,h (s i —l,} =
M. In thc same way, for arbitrary natural 0 < [ < k,

: \ e MF : 21l = =

(my,...,m,) € M, = (my,...,my, :3” M. (20
Obviously, if we consider all 0 < [ < k, and all the sequences
(my,...,m,) € M, then the resulting (mj, ..., m,, £ ,” form the
entire set M, . \lw for two different [ # I,

1 : 1

Imu,.....m,_.-"'_qf': == 72 ey m;._.:gfl_]. (28)




my+..+my,=20 [30]

depends on 5. The average value of 4 is 8 = 0. For large values
of k. the number of the paths c rresponding to the r:mdom walk

- . 1 . . = - O —— =
distance & should be given by the Gaussian function —=e # N_.

v A
[n particular, the value
= Cagei
N', = —=Ng (39)
: e
corresponds to 6 = 0.

Summarizing, -

"—,T'\T < N(a) < Ng, (40)

where the numbers N and N, were calculated in (31, 36). There-
fore the entropy is bounded in the following way

In2 : el In3
o +ola) < Sla) < —rseannths (ll)
'l-lﬂ."‘p] lu"'rl'—_\]

A necessary condition for the agreement of the entropy S(a) with
the Bekenstein-Hawking entropy:

In2 In3
= ¥ 7, = (42)




VI11. EXACT CALCULATION (MEISSNER)

Generalization of the recurrence relation used above to a relation
satisfied by the desired number N(a) itself:
N(a) = 6(@— V3/2) (:3.\':'_?: —V3/2)+2N(@a—v2)+..-
+9N (@ — /|mil(jmi] +1) + .-+ 2 ’r\.- 4a*>+1— 1]) (43)
Py - — = )
where [] stands for the integer part, and a = a8@ytp;. The Laplace
transform of N(a):
-\; -
P(s) = f da N(a) e ™ (44)
0
. oo _—s+/k(k+2)/4
2 D ey &

= : : (45)

- f 00—+ E(E+2)/4
s (1—32;_:1{. v )

The simple real pole is s, = 2771, where

(= Z t—?f‘M\f m/|(|m|+1) — 0. r_lﬁ_}
U','.'.':-';!._:.
And
Fo f-'ll[ a \ —
S(a) = —— + Ola). (47)
y llf}l .

Taking into account the condition _;m; = 0 produces the sub-
leading term

s T™ @ 1 -.
ol\a) = -P—EE—EIII(I—O[LI. [;18)

The numerically calculated value:

v = 0.23753295796592 . . . (49)
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VIII. THE SPIN PROBABILITY DISTRIBUTION

Given any value a of the classical horizon area, and the N(a)
quantum states of the horizon labeled by all the finite sequences
(my, ..., my) which contrubute to the entropy, one can fix any arbi-
trary value
Z (50)
and consider the subset of states corresponding to the sequences such
that

m; = m. (51)
Denote the number of the elements of this subset by N, (m). The
ratio

Niay(m)
P (m) —_ (52
Hl J -\\ (ﬂh \ _)
can be considered as the probability that the first puncture is labeled
by m;y = m. The question is, what P (m) is when a is large

compared to the minimal area a,, created at the puncture’,
am = 8mylpy/|m|(lm| + 1). (53)

(Notice, that the answer could make no probabilistic sense, if the
limg—,oc P(z)(m) were 0 for all the values of m, for example.) The
number N,)(m) defined above can be also thought of as a number
of all the finite sequences (ms, ..., m,) such that

- T T T Ty a— an, -
Zml = —m, Z\;’;mr|1|ml|—-ﬁ—11 < re— (54)

"This issue has been raised recently by John Bacz.




IX. REANIMATION OF THE QUASI NORMAL MODES LINK

Dreyer’s calculations connecting the ABCK entropy from Quan-
tum Geometry, the BH entropy, the quasinormal-modes and the
quantum mechanical formula AE = wh rely on the ‘entropy’ de-
rived from the number of states of the type (EJmin; - =+ Jmin ODly-
Our results show, this is not the full entropy.

Remarkably however (Baez, private communication), the link can
be found if we use instead of our area operator the flux-area operator
defined above by the eigen values

ag" = 8 Z \mil, (59)

(G = h = 1) which also arguably corresponds to the classical area
observable. Recall, that the corresponding entropy was

el fghy 3 In3 a
Shla): = IS (60)
' 7y 405
The consistency with BH implies
In3 p
i — (61)
The area spectrum gap is a multiple of
1
Aag = 8my; = 4y = 4In3 (62)

Defining after Dreyer the frequency wsu(2) by
At = 32aMAM = 32nMwsy(2) (63)

we find

fa—
=
=]
Qd

Musyo = — (64)

oo
|




and notice, that wsy(2) coincides with the limit of the quasinormal-
mode frequences in which the dumping is maximal.

Remarks:

_ the calculation uses the SU(2) gauge group of Quantum Geom-
etry

_if one assumes that Quantum Geometry is an SO(3) theory and
repeats the calculation of the area. entropy, 7 and finally wso(s), the

resulting value of wso() 1

Wso(3) = Wwsu(2)- (63)

_ The status of the flux-area operator: there are several remarks
related to this point. The flux-area operator used above is given
by the flux of the vector field normal to the horizon. The ACBK
framework distinguishes this operator in a very special way, speci-
phic for the horizon only. The normal vector field is defined by the
extra structure provided at the horizon, namely the given internal,
su(2) valued vector field r. Contracted with the Ashtekar frame field
E:, r'E? defines the vector normal to the horizon. Itself r is NOT
a dynamical field. The flux-area operator Baez proposes to use is
obtained from the flux integral corresponding to 7 with the extra
absolute value inserted under the integral defining the flux. Clas-
sically this an equivalent to the usual definition of the area of the
horizon. The quantum operators, on the other hand, are different.
If we want to take the QN mode relation seriously, we choose the
flux-area definition. Consider now instead of the horizon, a regular
9_surface contained in the bulk. Do we have again two area opera-
totrs? In this case the internal vector field r normal (via the soldering
form) to the surface is not apriori given. \We need to construct it from
the surface and from the frame. Therefore it involves the dynamical
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