Title: Phase Space Quantization of 2+1 Gravity In Chern-Simons Formul ation
Date: Oct 30, 2004 03:35 PM

URL: http://pirsa.org/04100039

Abstract:

Pirsa: 04100039 Page 1/14



C. Meusburger, Perimeter Institute for Theoretical Physics

Phase space and Quantization of
(2+1)-dimensional gravity in the
Chern-Simons formulation

Workshop on quantum gravity in the Americas:
Status and future directions,
October 29-31 2004

References:

1. C. Meusburger, B. J. Schroers: Poisson structure and symmetry in
the Chern-Simons formulation of (241)-dimensional gravity,
Class. Quant. Grav. 20 (2003), gr-qc/0301108

]

. C. Meusburger, B. J. Schroers: The quantisation of Poisson struc-
tures arising in Chern-Simons theory with gauge group G x g°,
Adv. Theor. Math. Phys. 7 (2003) 1003-1042, hep-th/0310218

3. C. Meusburger, B. J. Schroers: Mapping class group actions in
Chern-Simons theory with gauge group G x g°, to appear in
Nucl. Phys. B, hep-th/0312049

Contents:

(=1

- Background: (2+1) gravity as a Chern-Simons gauge theory

[ ]

. Phase space and Poisson structure
3. Quantization
4

. Symmetries

en

. Outlook and Conclusions




1 (2+1) gravity as a Chern-Simons gauge theory

[Achucarro, Townsend, Witten|
spacetime M =R x 5,

S,n = genus g surface with n punctures (massive particles with spin)

gauge group L= Ll x R3, (u1,a) - (uz,a2) = (wyuz, a1 + Ad(ui)az)
P ciso(2,1): [J° | =], [JP|=€¢¥P. [P, P]=0
(J=,J") =0 (P =" (P*, P =0

i Bz)=e(z) PP+ wh(z) J°
gauge connection A¥“(z) = e;(z) . G{I},
triad spin consection
Chern-Simons action Ics[A] = [, (AAdA) +3{(ANAAA)

equations of motion §A = F(z) = D_e’(z) F+ F.(z) Jo=0
— e

lorson curvature
gauge transformations A —g-A-g~ ' +gdg™!
phase space Mg, = flat connections on S, ,/gauge transformations

» finite dimensional

» Poisson structure from canonical Poisson structure of gauge fields

[Fock, Rosly]: Mg, as finite dim. quotient via graph in S, ,

e Mg, = flat graph connections/graph gauge transformations

e Poisson structure via auxiliary Poisson structure on space of graph con-
nections (need: classical r-matrix)




2 Phase space

graph set of generators of (S5, )

:rl{S,.,i) = {ml....,Tn".ﬂlibl.....ﬂg.bg: [bg.ﬂ;1 ---[bl.al_llm,.---m; = 1)

graph connections holonomies

handles: A;, B; € P}
particles: M; = (™", —Ad(e™")j) €C,o, © P* =12, pi = mss

= P momentum, j ~ angular momentum
graph gauge transformations simultaneous conjugation with }5‘;

phase space

.fusj_. — {(.‘lf]. - J‘f..,. :11. Bl-“-- _-flg. Bg] = C.l-‘ll'l % ... % 'Cp,;.. % ('PJT):‘.gl
[By, -*i;l] -+ [By, AT M, - - My = 1}/sim. conjugation with P




3 Poisson structure

n+2g

classical r-matrix r = P, @ J* = Poisson structure on (P;)

properties
in terms of functions F € C>=((L1)***) "on momentum space” and "angular

1
Ly
momenta” 3%, X € {M,,..., B;}:

e mixed contributions of quantities associated to different particles and
handles
» semidirect-product structure
{A.F2}=0
{7, F} € C*((L3)™*)
GrEiy= Y FEz i Pz eC((@)™Y)

Ze(M;.—B,)

constraint algebra

s mass-and spin constraints for particles: Casimir functions

Pf = -‘-‘3 =0 Puda, — isi =0
» six first-class constraints
K = (e —Ad(e ™ )5%) = [B,, A; ] --- [B1, AT | M --- My = 1
— pf =0 }:' =0
X i} =iy U5 P ) =eady {PEE0}=0




4 Quantization

e Chern-Simons theory with compact, semisimple gauge group: combina-
torial quantization [Alekseev, Grosse, Schomerus|

e generalised to SL(2,C) [Buffenoir, Noui, Roche]

Quantization for P}

1. decoupling transformation [Alekseev, Malkin]
Poisson algebra = direct sum of n particle and g handle algebras

b

. quantization of particle and handle algebra
particle algebra P = U(so(2.1)) @ C*(L})
Ga® F) - (s @ F3) = Ja-v s @ [y F32 — 1hjy ® F1(Ja-F3)
with jo.F(u) = £|e=oF (e ue)
= irreps labelled by u, s &
= representation spaces isomorphic to representation spaces of P;
handle algebra H = U(so(2,1) @ so(2,1)) ® C=(L] x L3)

(o @ F)-Us @ F2) = Jav 1o @ FiF2 — ihjs @ F(Ja-F3)
with (aj2 + 857).F(ua, up) = %leoF (uae™, use™*uz'uge™™)

= single irrep on L3(L] x L))

3. quantum theory

» representation space of quantum algebra
Hiin =H‘p_l‘: 3..-'37{?___“ Sﬁwc-ﬂ----ﬁﬂw;
g\
¢ open question: implementation of constraints <> invanance under
action of quantum double D(Ly)




Generators of the mapping class group

1. Dehn twists around embedded curves on S, (particles fixed)
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5 Symmetries: Action of the mapping class group

Action of Map(S,;-\D) on fundamental group induces action on auxiliary

Poisson algebra

1. classical action of Map(S;\D)

e Map(S,-\D) acts by Poisson isomorphisms
e action of Dehn twists around embedded curves 7 related to infinites-
imally generated group action:

— parametrize holonomy as Hp] = (e * —Ad(e%7)3")

— consider analogue of spin constraint ¢, = p'3"

- {c,,-} = one-parameter group of transformations

2. quantum action of Map(S,\D)

o Map(S,q\D) acts by algebra automorphisms of quantum algebra =
action on representation spaces

e quantum action of Dehn twists: action of ribbon element in repre-
sentations IL, of quantum double D(L 3]

e quantum action of braid group: action of universal R-matrix in

representations I1;; of D{LJ)
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Action of Map(S;,\D) on fundamental group induces action on auxiliary

Poisson algebra

1. classical action of Map(S,\D)

e Map(S;\D) acts by Poisson isomorphisms

¢ action of Dehn twists around embedded curves + related to infinites-
imally generated group action:

— parametrize holonomy as H[y] = (e %", —Ad(e%7")57)

— consider analogue of spin constraint ¢, = pj’

— {c,,-} = one-parameter group of transformations

2. quantum action of Map(S,.\D)

® Map(S,.\D) acts by algebra automorphisms of quantum algebra =
action on representation spaces

e quantum action of Dehn twists: action of ribbon element in repre-
sentations [, of quantum double D(f,;)

® quantum action of braid group: action of universal R-matrix in
representations IT;; of D(L])




6 Outlook and Conclusions

Description of phase space of (2+1 )-dimensional gravity via auxiliary Poisson
structure on holonomies of generators of m1(Sy.n)

phase space

e parametrization by finite number of variables with close relation to phys-
ical degrees of freedom

¢ investigation of Poisson structure, decoupling

e study of symmetries (residual gauge symmetries and Map(5;\D))

guantization
e reduced to quantization of two building blocks
(particle and handle algebra)
e construction of quantum algebra and irreducible representations
e quantum action of Map(S;:\D)
e quantum double D{f.;} as quantum symmetry

e general: Chern-Simons theories with gauge groups Gxg"

open questions

e construction of physical Hilbert space, implementation of constraint
[Bgs A5%) -~ - [B1, AT ' | My - - My ~1
< invariance under action of D(Lj)
— Clebsch-Gordan analysis of tensor product representations of D(E;J

e application to concrete physics problems







Generators of the mapping class group

1. Dehn twists around embedded curves on Sy (particles fixed)




