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Consequences of spacetime
discreteness for propagation of waves

(Fay Dowker, JJH, Rafael Sorkin. One paper out, two
more to come.)

Some questions:

1) Does spacetime discreteness imply “Lorent=z
violation™?
NG

2) How does the causal set structure avoid Lorentz

violation?

3) What are the phenomenological conseguences of
causal set discreteness?

4) Can the non-local aspects of the causal set
structure be reconciled with the level of locality that
we observe?




Consider rotational symmetry in condensed matter
physics. In what sense is a gasro ationally invariant?
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A gas is rotationally invariant. It can be so
because its microscopic structure is random.
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EXAMPLE 1:
| attice in 2D Minkowski space X

Consequences: | orentz violating ultraviolet cutoff for
waves propagating on the lattice (a "trans- -Plankian
problem”), maybe altered dispersion relations..

Similar situation for Regge triangulations, SpIn foams,
eic.




For spacetime, Lorentz invariance of a discreie
underlying structure can be understood by analogy to
this.
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EXAMPLE 1:

Lattice in 2D Minkowski space

Consequences: Lorentz violating ultraviolet cutoff for
waves propagating on the lattice (a “trans-Plankian
problem”), maybe altered dispersion relations...

Similar situation for Regge triangulations, spin foams,
etc.




EXAMPLE 2:
Causal set

A locally finite partial arder for which

Order «— Causal arder
Number «— Volume

The causal set is taken to be the fundamental
siructure. For some causets. a Lorentzian manifold is
a good approximation.

Sprinkling is a Poisson process:
v

Is the probability to find » elements sprinkled into a
region of volume V.
Volume is a Lorentz invariant quantity, so

The probability distribution for sprinkling is
locally Lorentz invariant.

When given a manifold, we can model the
microscopic structure by a random sprinkling.




Symmetry and discreteness

Consider rotational symmetry In condensed matter
physics. In what sense is a gas rotationally invariant?

“Whenever a continuum 1S 3 gooad approximation to
the underlying structure, the underlying discreteness
must not. in and of itself, suffice to distinguish 3
direction.”
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Symmetry and discreteness

Consider rotational symmetry in condensed matter
chvsics. In what sense is a gas rotationally invariant?

enever a continuum is a goo 0
he underlying structure, the underlying discreieness
must not, in and of itself, suffice to distinguish a
direction
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A gas is rotationally invariant. It can be so
because its microscopic structure is random.







Locality, Lorentz Invariance: a tradeoff?

B and C are A's “past

- *A - 2 neighbors”. This
oB o a residual locality allows
o -0 = - us easily to define
operators that are local
L] =] 3

in the continuum limit.

In a causet sprinkled into 2D Minkowski:

A L] L

L] L] @

What are A’s past neighbors? Elements linked to A
have the least timelike separation from A in the
original spacetime. But there are infinitely many of
them, spread along the light cone (because there is
infinite volume to the past of A and spacelike to any
finite set of elements linked to A).

Why choose LLI over locality? LLI is better tested.
Causal structure is easily preserved. No need for
other data to reconstruct the manifold.

“Could a quantum ‘sum over lattices’ recover LLI7"
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EXAMPLE 1:
Lattice in 2D Minkowski space %

Consegquences: Lorentz violating ultraviolet cutoff for
waves propagating on the lattice (a “trans-Plankian
problem”), maybe altered dispersion relations...

Similar situation for Regge triangulations, spin foams,
etc.




?henomenoiogical Consequences
The causal set hypothesis mplies nNo violation of LLL

Are there consequences of Plank scaie spacetime
structure for wave prog sgation over long distances
(Lieu and Hillman, 2003)7

More specifically, will spacetime discreteness conflict
with observation here?

EXAMPLE: Scalar field on 4D Minkowski space.
Dynamics are expressed by the Green's function

, a d-function on the past light cone. For the causet
discretisation, there is a simple function that goes 10
the above in the continuum limit:

Lr L.l — lr‘ B ¢ Const

For a causal set sprinkled Into Minkowski at Plank
density, there is an excellent level of correspondence
between the continuum and discrete maodeis of
propagation from source to receiver. No “trans-
Plankian™ problem.

Positive consequences? Dispersion in phase space
(“swerves”)? Explanation for HECR's? Effects of
non-locality? Need more deialled nodels
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1
3 3-function on the past light cone. For the causet
discretisation, there is a simple function that goes to
the above in the continuum limit:

For a causal set sprinkled into Minkowski at Plank
density, there is an excellent level of correspondence
between the continuum and discrete models of
propagation from source 10 receiver. No “trans-
Plankian” problem.

Positive consequences? Dispersion in phase space
(“swerves”)? Explanation for HECR's? Effects of
non-locality? Need more detailed modeis.










Scalar field dynamics on a causal set

Start with massless field In 2D Minkowski Wave

equation: O¢(x) = 0.
How can we approximate Od(x) ?

Answer: Discretise this non-local expression, which
approximates O4(0).

Using a sprinkied causet, the integral = a sum with
contributions from each element. The causal set
structure provides & measure of the “yolume™ ¥ of the
interval between two elements (the number of
elements in it).

The scheme can be straightforwardly generalised 1o
other dimensions.

How does it work? Can we see why the above
Lorentz-invariant expression is approximately local?
Why isn't it sensitive to values of ¢ “far down the light-
cone”?







