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(G1ven that the hard conceptual problems are not present anymore
one can have fun quantizing the theory. Among the key results
obtamed

Singularities are elimmated m cosmology and a mechanism tor
mplementmg Smolin’s “life of the cosmos™ arises

One can solve the problem of time by implementmg a relational
time. This leads to a fundamental mechanism tor loss ot unitarity
due to quantum gravity that preserves energy.

The mechanism can elimmate the black hole mformation paradox
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An aspect of the program that has dummished mterest m it. 1s that
smce one mtroduces a space-tune lattice, the usual kinematics ot
loop quantum gravity 1s lost. Or at least. 1s present only m a
modified form suitable to lattice contexts
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An aspect of the program that has dimmished mterest i 1t, 1s that
smce one mtroduces a space-tune lattice, the usual kmematics ot
loop quantum gravity 1s lost. Or at least, 15 present only m a
modified torm suitable to lattice contexts

“While being a fascinating possibility, such a procedure would be
a rather drastic step n the sense that it would render most resuilts
of LOG obtained so far obsolete”™ T. Thiemann “The Phoenix Project”
ar-¢/ 0305080
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Discretize tume and keep space contmuous m the classical
action

Apply the consistent discretization scheme.

One gets a theory that 15 constramt-tree.

Withm this theory one can see that a quantity akin to the
contunmim difteomorphism constramt 1s conserved
Theretore it can be consistently imposed as a constramt.

The resulting theory, with this extra constramt, has the
exact same kinematics as LQG but an explicit dynamuics
(no Hamultonian constramt )
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We start with the usual action.
C" = };).” F.:;.
C = —= (r TF,—(14+067)K 'Ifh;:)
‘y"{ii“'[ff ;

T — / dtd’ r (PE — N%Ca - “Y(.'>
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Where V' 1s a “vertical™ parallel transport (1n the tume direction) To
get this expression one tirst discretizes m tune and space, replaces

the F_, with a holonomy and then takes the limit in whach the spatial
lmks go to zero. The last term just enforces that the V's be m SU(2)

SU(2) gauge mvariance 1s exactly preserved.
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[t now one performs an mfimtesmmal spatial transtormation x™*=x+v?
one mmmediatelv sees the action 15 mvariant. The associated conserved
quantity through Noether s theorem 1s.
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[t now one pertforms an mfmitesunal spatial transtormation x™=x*+v?
one mmmediatelv sees the action 15 mvariant. The associated conserved
quantity through Noether's theorem 1s,

Ca e Eb U.b

Where E 1s the momentum canonically conjugate to the connection.

R

n—+—l =¥ _IP{I‘
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[t now one performs an mfmitesunal spatial transtormation x™*=x*+v?
one umediately sees the action 1s mvariant. The associated conserved
quantity through Noether's theorem 1s,

C, = EPFi,

Where E 1s the momentum canonically conjugate to the connection.

a — v -1Dayx/

——

So one can further restrict the dynamics ot the theory mn a
consistent fashion imposmg C_=0. The kinematics ot the theory

15 exactly the same as m ordinary LQG. The dynamics 1s ditterent.
it will be given by the usual consistent discretization treatment ot
the action of the previous shde.
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one umediately sees the action 1s mvariant. The associated conserved
quantity through Noether's theorem 1s.

C, = EPF,

Where E 1s the momentum canonically conjugate to the connection.

a — /-1 pay/

——

So one can further restrict the dynamaics ot the theory n a
consistent fashion imposmg C_=0. The kinematics of the theory

15 exactly the same as m ordmary LQG. The dynamics 1s different,
it will be given by the usual consistent discretization treatment of
the action ot the previous shde

Quantization 1s straightforward! (no constramts) but computationally
~agapeplex tor the case of full GR. The quantum kinematics 1s theraswal
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An explicit example: BF theory
L(n,n+1) = Tr{ By(z) Fia(z) + Bi(z) (Aa(z) — V(z) Apsr2(z)V Lz) + &(V())V Yz))
+By(z) (V(2) Apsr 1 (2)V M 2) + V(@) V M (z) - 4(2)) + o (V(2)V (@) -1))
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An explicit example: BF theory
L(n.n+1) = Tr{ By(z) Fia(z) + Bi(z) (Aa(z) — V(z) Apsra(z)V L(z) + R(V(2))V (z))
+Bo(z) (V(2) Apsy 1 (2)V H2) + V()0 V™ (z) = 4 (z)) + 6 (V(2)V(z) - l)}

(Canonical momentum to the connection

Ez)pey =V YH2)B'V(z), i=1.2.
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An explicit example: BF theory
Linn+1)=Tr { By(z)Fya(z) + By(z) (As(z) = V(2)Apsy o(2)V M z) + R(V(2))V ()
+Bs(z) (V(z)Apay 1 (2)V Hz) + VI(2)0V 7 (2) - 44(2)) + L (V(z)V(z) - 1)}

(Canonical momentum to the connection:
Ei (z)ps =V 1 (2)B'V(z), i=1,2.

Detfuution ot the canonical momenta ot the B's give evolution
equations for the A’s.

PB = 0= Ay(z) — VA, 2(2)V Hz) + 8(V(2))V(z) !,
PB = 0=-4(z) + VAps1a(@)V N z) — 8, (V(2))V (x) .
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Linn+1)=Tr {B.;II'F;-:-I! + By(z) (Ao(z) = V(z)Apey o(2)V 7Hz) + R(V(2))V (2))
+Bs(z) (V(z)Apay 1 (2)V Hz) + VI(2)0V " (2) - 44(2)) + L (V(z)V(z) - 1) }

(Canonical momentum to the connection:
Ei(zx)pey =V Y 2)B'V(z), i=1.2.

Detfimuition ot the canonical momenta ot the B's give evolution
equations for the A’s.

PB = 0= Ay(z) = VA o(z)V (z) + &(V(z))V(z)!,
P”: =0=—-A1(2)+ VA1)V Hz)-h(V(z))V(z) .

And the defiition of PE? yields F,=0
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An explicit example: BF theory
Linn+1)=Tr {B_;l.rlﬂ-_u_.r: + Bi(z) (Aa(z) = V(z)Apsr o(z)V )+ &K(V(Z))V "{.r#)
+B5(z) (V(z) Apsp 1 (2)V Hz) + V(2)OV " (z) - A(2)) + (:l't:rﬂ'T[".ri -1) }

C t’lllOlllCﬂl momentum fto tll{i‘ connection:
Ei(z)pe =V Y 2)B'V(z), i=1.2.

Detimition of the canonical momenta ot the B's give evolution
equations for the A’s.

PB = 0= As(z) = VAp o)V z) + 0a(V(x))V(z)!,
PB = 0=—A,(2) + VA, (2)V(z) =, (V(2))V(z)"

And the defuution of P®° yields F,=0

The momentum of V" also vanishes and vields Gauss™ law.
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Quantization 1s achieved by mplementing the evolution equations
as a unitary transtormation. This can be mumediately done

UA. A=< A.n+1lAn>

= (A - VAV + (VYY) 6 (4 - VIAY + (VYY) exp (Tr/ B”F).
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Quantization 1s achieved by mplementing the evolution equations
as a untary transtormation. This can be mmediately done:

UA. A)=< A n+1|lAn>

= (A - VAV + (VYY) 6 (4L - VIAY + (VYY) exp Tr/B“F

One has to umpose the constramnt F ,=0, which yields the usual
space of states of BF theory (Oogurt. Noui-Perez)

The unitary evolution depends on two free functions B, and V,

but 1t 15 clear that on the space of physical states the evolution 1s
mdependent on them.
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Summary:

* Bv discretizing onlv time and additionally
imposing the ditffeomorphism constraint one
can set up a framework where consistent
discretizations can be seen as a wayv of
implementing the dvnamics of loop
quantum gravity,
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Summary:

» Bv discretizing only time and additionally
imposing the ditffeomorphism constraint one
can set up a framework where consistent
discretizations can be seen as a way of
implementing the dvnamics of loop
quantum gravitv.

* This opens a concrete avenue for numerical
quantum gravity.
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