Title: Vacuum State for LQG

Date: Oct 29, 2004 05:05 PM

URL: http://pirsa.org/04100027

Abstract:

Pirsa: 04100027

Free vacuum for loop quantum gravity

Florian Conrady AEI Potsdam & CPT Marseille

Workshop on Quantum Gravity in the Americas Perimeter Institute, Waterloo October 29, 2004

[gr-qc/0409036]

Plan of talk

- 1. Motivation
- 2. Construction of free vacuum state
- 3. Semiclassical properties

[gr-qc/0409036]

Central problem of loop quantum gravity

What is the semiclassical and low-energy limit?

- Does the theory contain semiclassical states that reproduce observed Einstein gravity?
- Can we obtain an effective action for computing graviton scattering?

What we have so far:

- proposals for vacuum states
- tentative results on
 - * perturbation theory
 - * modified dispersions relations [Gambini, Pullin, Thiemann . . .]
 - * renormalization

[Smolin, Starodubtsev . . .]

[Markopoulou,Oeckl]

Perturbation theory in LQG?

Motivating question for present work:

Can one translate the perturbative approach to field theory to loop quantum gravity?

Problem: how to translate field-theoretic concepts to a theory based on abstract labelled graphs?

What is the analogue of a field fluctuation in a space of networks?

How to separate operator on spin networks into free and interaction part?

What are the free states?

Scalar field theory

 ϕ^4 -theory:

$$H = \int d^3x \left[\frac{1}{2} \pi^2 + \frac{1}{2} (\nabla \phi)^2 + \frac{1}{2} m^2 \phi^2 + \lambda \phi^4 \right]$$

Perturbation theory around trivial solution $\phi \equiv 0$.

Free part of Hamiltonian:

$$H_0 = \int d^3x \left[\frac{1}{2} \pi^2 + \frac{1}{2} (\nabla \phi)^2 + \frac{1}{2} m^2 \phi^2 \right]$$
$$= \int d^3k \left[\frac{1}{2} |\pi(\underline{k})|^2 + \frac{1}{2} (k^2 + m^2) |\phi(\underline{k})|^2 \right]$$

Associated free vacuum:

$$\Psi_0[\phi(\underline{k})] = \mathcal{N} \exp\left(-\int d^3k \, \frac{\sqrt{k^2 + m^2}}{2\hbar} |\phi(\underline{k})|^2\right)$$

Scalar field theory

 ϕ^4 -theory:

$$H = \int d^3x \left[\frac{1}{2} \pi^2 + \frac{1}{2} (\nabla \phi)^2 + \frac{1}{2} m^2 \phi^2 + \lambda \phi^4 \right]$$

Perturbation theory around trivial solution $\phi \equiv 0$.

Free part of Hamiltonian:

$$H_0 = \int d^3x \left[\frac{1}{2} \pi^2 + \frac{1}{2} (\nabla \phi)^2 + \frac{1}{2} m^2 \phi^2 \right]$$
$$= \int d^3k \left[\frac{1}{2} |\pi(\underline{k})|^2 + \frac{1}{2} (k^2 + m^2) |\phi(\underline{k})|^2 \right]$$

Associated free vacuum:

$$\Psi_0[\phi(\underline{k})] = \mathcal{N} \exp\left(-\int d^3k \, \frac{\sqrt{k^2 + m^2}}{2\hbar} |\phi(\underline{k})|^2\right)$$

Traditional quantum gravity

Extended ADM variables (E_i^a, K_b^j) .

Constraints:

$$G_{jk} = K_{a[j}E_{k]}^{a}$$

$$V_{a} = -D_{b}[K_{a}^{j}E_{j}^{b} - \delta_{a}^{b}K_{c}^{j}E_{j}^{c}]$$

$$C = \frac{1}{\sqrt{|E|}} \left(K_{a}^{l}K_{b}^{j} - K_{a}^{j}K_{b}^{l}\right) E_{j}^{a}E_{l}^{b} - \sqrt{|E|} R(E)$$

$$+ \dots$$

Perturbation theory around flat torus T^3 of macroscopic size L. Introduce fluctuation variables

$$e_k^a := E_k^a - \delta_k^a, \qquad K_a^k = K_a^k - 0,$$

and impose linearized constraints and gauge conditions.

→ reduced phase space variables

$$(e_{ab}^{\text{red}}, K_{\text{red}}^{cd})$$
.

$$\hat{H}_0 = \frac{1}{\kappa} \int d^3x \left[\hat{K}^{ab}_{\text{red}}(\underline{x}) \hat{K}^{ab}_{\text{red}}(\underline{x}) + \partial_c \hat{e}^{\text{red}}_{ab}(\underline{x}) \partial_c \hat{e}^{\text{red}}_{ab}(\underline{x}) \right]$$

Associated "free" vacuum:

$$\Psi_0[e_{ab}^{\rm red}(\underline{k})] = \mathcal{N} \exp\left[-\frac{1}{\hbar\kappa} \sum_{k < \Lambda} k \, e_{ab}^{\rm red*}(\underline{k}) e_{ab}^{\rm red}(\underline{k})\right]$$

(To make state well-defined, we introduced UV cutoff Λ !)

In position space:

$$\Psi_0[e_{ab}^{\rm red}(\underline{k})] = \mathcal{N} \exp\left[-\frac{1}{\hbar\kappa} \left(\int \mathrm{d}^3x \int \mathrm{d}^3y \ W_{\Lambda}(\underline{x},\underline{y}) \ e_{ab}^{\rm red}(\underline{x}) e_{ab}^{\rm red}(\underline{y})\right)\right]$$

Perturbation theory in LQG?

Motivating question for present work:

Can one translate the perturbative approach to field theory to loop quantum gravity?

Problem: how to translate field-theoretic concepts to a theory based on abstract labelled graphs?

What is the analogue of a field fluctuation in a space of networks?

How to separate operator on spin networks into free and interaction part?

What are the free states?

Our approach

Since we do not know how to linearize LQG itself, we take an indirect strategy:

- know how to linearize ADM gravity.
- know that fields and loops are physically related.
- → employ this relation to translate vacuum and graviton states of linearized ADM gravity into states of the loop representation.

 [Ashtekar, Rovelli, Smolin, Varadarajan]

Purpose: obtain information on

- how semiclassical properties manifest themselves in the loop framework,
- and how this could be exploited to do perturbation theory.

Novel features:

- We arrive at states in the kinematic Hilbert space of full non-linearized LQG.
- Momentum cutoff of ADM states is translated into cutoff graph for LQG states.

 \downarrow canonical transformation $(E^a_i,K^j_b) \to (E^a_i,A^j_b)$

$$\begin{split} \Psi_0[e^{\rm red}_{ab}(\underline{k})] &= \mathcal{N} \exp \left[-\frac{1}{\hbar \kappa} \Bigg(\int \mathrm{d}^3 x \int \mathrm{d}^3 y \; W_{\Lambda}(\underline{x},\underline{y}) \, e^{\rm red}_{ab}(\underline{x}) e^{\rm red}_{ab}(\underline{y}) \right. \\ & \left. -\frac{\mathrm{i}}{\beta} \int \mathrm{d}^3 x \; e^{\rm red}_{ab}(\underline{x}) \, \varepsilon_{acd} \partial_c e^{\rm red}_{db}(\underline{x}) \right) \Bigg] \end{split}$$

textension to full configuration space

$$\Psi_0[e_{ab}(\underline{k})] = \mathcal{N} \exp \left[-\frac{1}{\hbar \kappa} \left(\int d^3 x \int d^3 y \ W_{\Lambda}(\underline{x}, \underline{y}) \ e_{ab}(\underline{x}) e_{ab}(\underline{y}) - \dots \right) \right]$$

$$\downarrow \text{ replace } e_{ia} = E^a_i - \delta^a_i \quad \text{by} \quad \tfrac{1}{2} \left(E^a_i(\underline{x}) E^b_i(\underline{x}) - \delta^{ab} \right) \equiv \tfrac{1}{2} \left(g^{ab}(\underline{x}) - \delta^{ab} \right)$$

$$\Psi_0[E_i^a(\underline{k})] = \mathcal{N} \exp\left[-\frac{1}{4\hbar\kappa} \left(\int \mathrm{d}^3x \int \mathrm{d}^3y \ W_{\Lambda}(\underline{x},\underline{y}) \ \left(g^{ab}(\underline{x}) - \delta^{ab}\right) \left(g^{ab}(\underline{y}) - \delta^{ab}\right)\right)\right]$$

bring state into "complexifier" form

$$\Psi_0(A) = \mathcal{N} \exp\left(-\hat{C}\right) \, \delta(A)$$

where

$$\hat{C} := \frac{1}{4\hbar\kappa} \int \mathrm{d}^3x \int \mathrm{d}^3y \ W_{\Lambda}(\underline{x},\underline{y}) \left(\hat{g}^{ab}(\underline{x}) - \delta^{ab}\right) \left(\hat{g}^{ab}(\underline{y}) - \delta^{ab}\right) \ .$$

From momentum cutoff to triangulation

Choose triangulation \mathcal{T}_{Λ} and dual complex \mathcal{T}_{Λ}^* that mimic UV cutoff:

edges of \mathcal{T}_{Λ}^* straight (w.r.t. background) and edge length close to $l_{\Lambda}:=\pi/\Lambda$.

Connection is replaced by generalized connection on \mathcal{T}_{Λ}^* .

Delta function:

$$\delta(A) \rightarrow \delta_{\mathcal{T}_{\Lambda}^{*}}(\overline{A}) = \sum_{\tilde{S} \subset \mathcal{T}_{\Lambda}^{*}} \tilde{S}^{*}(0) \, \tilde{S}(\overline{A})$$

Metric operator:

$$\hat{g}^{ab}(\underline{x})\,\tilde{S}=g_S^{ab}(\underline{x})\,\tilde{S}$$

Final formula

After gauge-averaging, final form of state is

$$\Psi_0 = \mathcal{N} \sum_{S \subset \mathcal{T}_{\Lambda}^*} \Psi_0(S) S,$$

where

$$\Psi_0(S) := S^*(0) \exp \left[-\frac{1}{4\hbar\kappa} \int \mathrm{d}^3 x \int \mathrm{d}^3 y \ W_{\Lambda}(\underline{x} - \underline{y}) \left(g_S^{ab}(\underline{x}) - \delta^{ab} \right) \left(g_S^{ab}(\underline{y}) - \delta^{ab} \right) \right].$$

Semiclassical properties of vacuum state

S-dependence of "wavefunction" $\Psi_0(S)$ is of Gaussian type:

- peak given by spin networks S for which eigenvalue $g_S^{ab}=\delta^{ab}$.
- peak spin networks similar to weaves! [Ashtekar, Rovelli, Smolin]
- exponential dampening in the deviation $g_S^{ab}-\delta^{ab}$

Semiclassical properties of vacuum state

S-dependence of "wavefunction" $\Psi_0(S)$ is of Gaussian type:

- peak given by spin networks S for which eigenvalue $g_S^{ab}=\delta^{ab}.$
- → peak spin networks similar to weaves! [Ashtekar, Rovelli, Smolin]
- exponential dampening in the deviation $g_S^{ab}-\delta^{ab}$.

Limit $l_{\Lambda} \ll l_p$

Our analysis indicates that for $l_\Lambda \to 0$

- the peak weaves becomes independent of the cutoff,
- have spin label 1/2,
- and graphs of a length scale close to the Planck scale.

Summary of results

- We have constructed states that could play the role of free vacuum and graviton states in LQG.
- Properties of these states:
 - * elements of the kinematic Hilbert space of the full theory.
 - * built-in cutoff graph, as a natural consequence of momentum cutoff of original ADM states.
 - * Gaussian superposition of spin networks.
- We have analyzed the peak of the Gaussian:
 - * constituted by weave states.
 - * indication that weaves maintain effective Planck scale discreteness when $l_{\Lambda} \rightarrow 0$.
- → unification of coherent state and weave approach.
- → inherent Planck scale cutoff in quantum states.

[gr-qc/0409036]

Limit $l_{\Lambda} \ll l_p$

Our analysis indicates that for $l_\Lambda \to 0$

- the peak weaves becomes independent of the cutoff,
- have spin label 1/2,
- and graphs of a length scale close to the Planck scale.

