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The idea of a hidden variable model of quantum
mechanics

In a classical theory, properties are associated with regions
of the state space

>

p2

X E1 < E<Ep

Y




Consider ga(z.p) ay if z < zq,

ar if 1 <z < zo,

p az If x > xo.
A
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Consider ga(z.p) ay if z < x4,

a> if 1 <z < zo,

p az if x > xo.
A

Equivalently, 94 (z,p) = Xk apxk(z,p)

=X where
x1(z,p) = 1ifz <z
= 0O otherwise,
xo2(z,p) = 1lifz) <z <axo
= 0 otherwise,
x3(xz,p) = 1 ifz>zo

0O otherwise,
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a1 If © < xq,

Consider ga(z,p)
a> if 1 <z < x5,

p az if x > xo.
A

Equivalently, 94 (z,p) = Xk apxk(z,p)

> x where
Xl(il?,-p) = lifez<z
= 0 otherwise,
x2(xz,p) = 1lifzx <z <axo

0 otherwise,

x3(z, p) 1ifx>xo

X = 0 otherwise,

Can still have probabilistic outcomes if x,p Is unknown
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Prob(k) = [dx dp p(x,p) xr(x,p)




In quantum theory, we have

A=Y arpPg
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In quantum theory, we have

A=Y arpbg
p(A = ai||v)) = (V| P|v)
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In quantum theory, we have
A=Y arpbg
P(A = ai[|¥)) = (Y| Pgly)
The idea of a deterministic hidden variable theory is that

V) < 1)
A ga(N)
{Pkf} N {XR(A)}
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In quantum theory, we have
A= apbg
P(A = ai[|¥)) = (Y| Pgl)

The idea of a deterministic hidden variable theory is that
[¥) < u(A)
A< ga(A)

{Pkf} = {XR(A)}
There are many ways of measuring {P.}

Example: {|v1)(w1), I — |[v1)(¥1)}

I g,

I qu:}

| Y )
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Naively, one might hope to represent this as follows:

{|Y1) (V1) [¥2)(V2), |¥3)(¥3)} {|¥1) (¥1), [¥5) (¥5), [¥5) (¥3) }

x1(A) X 1 () o

x2(A) o\ o (A) ‘L \

x3(A) L A\ 5 (A) .

{[v1) (V1) I — |¥1)(¥1)}
x1(N)

> A

X-1(A) .\

The traditional notion of noncontextuality:
Every P is associated with the same x(\)
~=omcf@gardless of how it is measured




Achieving noncontextuality for pure
preparations and sharp measurements in 2d

1

|+ n) < Mn(u)Z{g

n-u forn-u>0
otherwise.

1 form-u>0

(+m) = xmi(u) = { 0 otherwise.

[ 1 (W) xn (0 = ; (1+m-n)
= |(+m| + n)|?




It was shown by Bell (1966) and Kochen and Specker (1967)
that a noncontextual hidden variable model of quantum
theory for Hilbert spaces of dimensionality 3 or greater is
Impossible. That is, quantum theory is contextual

This is called the
Bell-Kochen-Specker

theorem
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It was shown by Bell (1966) and Kochen and Specker (1967)
that a noncontextual hidden variable model of quantum
theory for Hilbert spaces of dimensionality 3 or greater is
Impossible. That is, quantum theory is contextual

[ 1 e “"E - L -
e T o g g
: e - | Fa 5 e |
?_"f‘ WOREREEET L G i .

LR

This Is called the

Bell-Kochen-Specker
theorem




The traditional definition of contextuality does not apply to:

(1) arbitrary operational theories

(2) preparations, transformations, or unsharp
measurements

(3) indeterministic ontological models
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The traditional definition of contextuality does not apply to:

(1) arbitrary operational theories

(2) preparations, transformations, or unsharp
measurements

(3) indeterministic ontological models

Proposed new definition:

A noncontextual ontological model of an operational theory
Is one wherein if two experimental procedures are
operationally equivalent, then they have equivalent
representations in the ontological model.
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Operational theories

o ] A
© "1 | 1©

Preparation Transformation  Measurement
P T M

—

These are defined as lists of instructions
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Operational theories

—

L ] A
© "1 | 1©

Preparation Transformation  Measurement
P T M

These are defined as lists of instructions

An operational theory specifies

p(k|P, T,M) = The probability of outcome k of M

given P and T.
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Defining operational equivalence of procedures

For preparations
P~ P if
p(k|P,M) = p(k|P’, M) for all M.
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Defining operational equivalence of procedures

For preparations
P~ P if
p(k|P,M) = p(k|P’, M) for all M.

For measurements
M~ M’ if
p(k|P,M) = p(k|P, M) for all P.
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Defining operational equivalence of procedures

For preparations
P~ P if
p(k|P,M) = p(k|P’, M) for all M.

For measurements
M~ M’ if
p(k|P,M) = p(k|P, M) for all P.

For transformations
T ~Tif
p(k|P, T,M) = p(k|P, T’,M) for all P, M.
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Defining the context of a procedure

The set of all Different equivalence

procedures @' classes of procedures

ol
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Defining the context of a procedure

Different equivalence
classes of procedures

The set of all
procedures

Different contexts

Pirsa: 04100017




Defining the context of a procedure

Different equivalence

The set of all
procedures classes of procedures
Different contexts
Example:

S
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Defining the context of a procedure

Different equivalence
classes of procedures

The set of all
procedures

Example:

Pirsa: 04100017



Defining the context of a procedure

Different equivalence
classes of procedures

The set of all
procedures

Different contexts
Example:

I\/Il_

Different
equivalence
olasses




An ontological model of an operational theory

Preparations

pp ()
[ up(\)dA = 1 LN,




An ontological model of an operational theory

Preparations
pp 2 —[0,1]

pp ()
[ up(N)dA = 1 /\ o

Measurements Em.1(A) L
Emk - 2 — [0, 1] Bt TN
> kEmke(A) =1 for all A Em.z(N) —




An ontological model of an operational theory

Preparations

pp ()
[ up(A\)dA = 1 LN,

Measurements Em.1(A) N

> )\
Emk - 2 — [0, 1] Ema(N) T N
>k Emke(A) =1 for all A Em.z(N) — |

Transformations
M :Qx Q2 —[0,1]
[T\, N)d)N =1 for all A e AL N

(A, )




An ontological model of an operational theory

Preparations
pp 2 —[0,1]

pp ()
[up(A)dA = 1 /\ . )

Measurements Em.1(A) N

»
Em - 2 — [0,1] Em2(N) i
> kEme(N) =1 for all A Em,3(N) — ] 5
Transformations

r—(\, )
M Q2 xQ— [0,1]
[TT(N,\)dN =1 for all AR pN— S T

Fi i h Af

eep(K[P, T, M) = [ dNdX émx(V) TT(V,A) pp(X) =




Defining noncontextuality

Preparation Noncontextuality

pp(A) = He(P) (A)

Measurement Noncontextuality

EMk(A) = Eemy £ (N)

Transformation Noncontextuality

I_T()\!? )\) — re(T)()‘,:r )\)
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Operational Quantum Mechanics

—

o ] A
© "1 1 1©

Preparation Transformation Measurement
P T M
Projector-valued
Vectors Unitary maps measures (PVMs)
1Y) U (P}
pec, 0 e
UW&U=0U"=1 Zﬁzlpsz
P¢ = Py

Prob(k) = (|UTP.U|¥)
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More general preparations

Probability p, prepare [y)
Probability ¢, prepare |y)
Measure {P, }
Prob(k)= p(¢|P|v) + q(x|Prlx)
= pTr(|Y) (| Py) + qTr(x) (x| Pr)
= Tr(pFy)
p = p|Y) (Y| + q|x) (x|

A density operator
p € L(Cy)

(Ylply) > 0,V
Tr(p) =1

p = |UY){(| <« Pure preparation

Pirsa: 04100017

p # |Y) (x| <> Mixed preparation




More general transformations

Prepare p

Probabillity p, transform with U
Probability ¢, transform with 1~
measure {E_ }

Prob(k)= pTr(UpUTE}) 4+ qTr(VpVTE,)
= Tr(7(p)Ex)
T(:) =pU()UT 4 qV (VT
A completely positive map (CP map)
T : L(Cy) — L(Cy)
T(p) = Sy AupAl,
S ApAy =1

T(p) = UpUT <« Reversible transformation
T (p) = UpU I & Irreversible transformation
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More general measurements

Prepare p
Probability p, measure the PVM /P,
Probability g, measure the PVM /0O,

Prob(k)= pTr(pP.) + qTr(pQ:)
— TI"(,OE;;)

E = pP + qQy

A Positive operator valued measure (POVM)
E, € L(Cy)

(Y| Eg|v) > 0,V
Zﬁzl Ep =1

{E.} = {P.} < Sharp measurement
irsa: 04100017 {Ek} # {Pf{‘} RN UnSharp measurement Page 35/92




Operational Quantum Mechanics

o ] A
© "1 1 1©

Preparation Transformation Measurement
P T M

| Completely positive  Positive operator-valued
Density operators ~ maps (CP maps)  measures (POVMs)

—

p 7 {Ek:}
G s oy L EERLC)  Be o)
Tr(p) = 1 T (p) _T >ou AppAy Z Er.=1
YpApAp =1 (%‘\Ekh-»} > 0,V
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Contexts for preparations in QM

The set of all
preparation
procedures

Different density operators p

Different contexts

Preparation
Noncontextuality

pp(A) = pp(A)




Contexts for preparations in QM

The set of all
preparation
procedures

Different density operators p

Different contexts

Examples of contexts for mixed preparations:

Different convex decompositions of p
Many {p;, [1;)} such that Preparation
p =3, pjlv;) (Wl Noncontextuality

a.k.a. the ambiguity of mixtures up(A) = pp(A)
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Contexts for preparations in QM

The set of all
preparation
procedures

Different density operators p

Different contexts

Examples of contexts for mixed preparations:

Different convex decompositions of p

Many {p;, [1;)} such that Preparation
p =Y pjlv;) (¥ Noncontextuality
a.k.a. the ambiguity of mixtures pp(N) = ﬂp(}\)

Different purifications of p
Many |W) 4p such that

p=Trp(|W)ap(WV|)
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Contexts for measurements in QM

The set of all Different POVMs {E}}

measurement
procedures

Different contexts

Measurement
Noncontextuality

Em,j(A) = &gy, (A)




Contexts for measurements in QM

The set of all
measurement
procedures

Different POVMs {E.}

Different contexts

Examples of contexts for unsharp measurements:

Different convex decompositions of {E}}
Many {pj, {Fj}} such that Measurement

Ey = 3 p;Ej, Noncontextuality
&M, (A) = &gy, (M)
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Contexts for measurements in QM

The set of all Different POVMs {E}}

measurement
procedures

Different contexts

Examples of contexts for unsharp measurements:

Different convex decompositions of {E}}
Many {p;,{E;}} such that

; Measurement
Ey =2 jpiEy Noncontextuality
Different fine-grainings of {E;} Em (N = (B i(A)
>IVE, kJ .

Many {Ej s} such that
Eﬁ.‘: — ZsEk,s
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Contexts for measurements in QM

The set of all
measurement
procedures

Different POVMs {E.}

Different contexts

Examples of contexts for unsharp measurements:

Different convex decompositions of { E}}
Many {p;,{E}}} such that

Measurement
Ey = X piEy, Noncontextuality
Different fine-grainings of {E..} EM..j()\) — 5{&.}4()‘)
Many {Ej s} such that | o
Ep =3 sEp s

Different Neumark extensions of {Ex}
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Contexts for transformations in QM

The set of all
transformation
procedures

Different CP maps 7

Different contexts

Transformation
Noncontextuality

(Vo A) =T (W, X)




Contexts for transformations in QM

The set of all
transformation
procedures

Different CP maps 7

Different contexts

Examples of contexts for irreversible transformations:

Different convex decompositions of 7

Many {p;,Uj} SUChTthat Transformation
() =2;pr;U;(OU; Noncontextuality

(VoA =T (W, X)
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Contexts for transformations in QM

The set of all
transformation
procedures

Different CP maps 7

Different contexts

Examples of contexts for irreversible transformations:

Different convex decompositions of 7

Many {pj,U;} such that Transformation

o = Ep dl :
() =X;priU;i()U; Noncontextuality

[ LA =TF £
Different unitary extensions of 7 TN, A) T7(A,A)
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Proof of preparation contextuality

(a preparation noncontextual
ontological model is impossible)

Pirsa: 04100017



Important features of ontological models

Let P < u()\)
P" — u'(\)
Representing distinguishability:
If P and P’ are distinguishable with certainty
then () /(A\) =0

ey () p(X) ' ()

» )\ >\

Representing convex combination:

If P” = P with prob. p and P’ with prob. 1 —p
Then p"(A) =p p(A) + (1 —p) /()
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Proof of preparation contextuality in 2d

— ba = (1,0 .
Pa U ( ) Ya L Py
Py < ¥a = (01) vy L ¥B
Pb s ?]bb = (1/2 \/5/2) /
| ve L Yo
PB «— YpBp = (@/21_1/2) lba.
P. — Ve = (1/2v_\/§/2)
PC s /U(f"' — (\/5/2: 1/2)
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Important features of ontological models

Let P < u()\)
P" — p'(X\)
Representing distinguishability:
If P and P’ are distinguishable with certainty
then () /(A\) =0

ey () p(X) 1 ()

» )\ » )\

Representing convex combination:

If P” = P with prob. p and P’ with prob. 1 —p
Then p"(A) =p p(A) + (1 —p) /(N)
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Proof of preparation contextuality in 2d

o %o = (1,0 |
Pa ba = (1,0) Yo Ly
P, — ¥ = (1/2,V3/2) c

.- ve L Yeo
Pgp < ¥B = (@/2:_1/2) Va
P, « % = (1/2,—V3/2)
P(_j > w(f"' — (\/5/2:1/2)
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Proof of preparation contextuality in 2d

Pirsa: 04100017

r 111 11

1 0
0 0

FATE

e

< Bl
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< Bl p

L]

=

|

| Al <
s w
< e

| —

LAJ{‘ =

~
Lad

R

W]

S

ocaop = 0
opop = O
occocc = 0
Gﬂ
O O
o, o




Proof of preparation contextuality in 2d

—
-
o O
S

Og =—
: 0 UﬂJ;‘—l —_— O
= > ( 00
gA = —
01 ) Op0 B 0
P, o (_,_lﬁa 3 ocoC 0
b 3 ~1./3
o = 14 o 41
PB - —E\-""r3 i G-a
; A 1 =
P TJe = ( 14,."_ _4;;3 )
c e -iv3 3 -
3 1.3 ) B O,
.= 4_ 4 C
PC «— e ( %v"?: %L |

P. and P 4 are distinguishable with certainty
Py, and Ppg are distinguishable with certainty

P. and P~ are distinguishable with certainty o,

0
0
0

pa(A) pa(A)
—  up(A) up(N)
,u.,:(/\) HG('\)
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L0 |

P, and P4 with prob. 1/2 each

P, and Ppg with prob. 1/2 each

P. and P with prob. 1/2 each

P4, Py and P, with prob. 1/3 each
P4, Pp and Pg with prob. 1/3 each
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P, and P4 with prob. 1/2 each

P, and Ppg with prob. 1/2 each

P. and P with prob. 1/2 each

P4, Py and P, with prob. 1/3 each
P4, Pp and Pg with prob. 1/3 each

Haa(A)
pB ()
tec(N)
ftabe(A)

papc(A)

~1a() + 50
%#'b(}*) + %m(h)

1 1

%#c(/\) + 51#-0(%) 1
é!f-ﬂ.(’\) = 51%(}*) + éﬁf-ﬂ()ﬂ)
1 1 1
51&4(/\) + gﬂ-B()‘) + gﬁirj(/\)
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1 1
—0a + —TA

1 1
= Sop+50p

[/2

= Eﬁfc i 5-‘?(_;‘
1 1 1
s gf'fn. + gﬂ"b + g”r:
1 1 1
— 55£.-1+§JB+§{TC.
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1 1
—0a + —TA

1 1
= Sop+5op

[/2

— iﬁfc + EUC?
— %f'fm -+ %JE} -+ %Ur:
1 1 1
- gf}"_.-‘l—f—gﬂB‘l—g{TCj.
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[/2

Paffl = PbB = PCC
= Pabc = PABC

By preparation noncontextuality

aA(N) = p(A) = pec(N)
— ﬁabc:(}‘) — HA FJ’C-T(’\)
=v(\)

Pirsa: 04100017

1 1
—0q + —TA

1 1
~%b o ~7B

igc + EUC.‘

1 1

1
—0q + =04 + g”r:

i
gﬂ",l —I— gf_TB

1
+ 5{?'(:'.
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1 1

I/Q — Egu + 5{71_1
1 1
— 5% + 553
— %Uc + %UC.‘
e %Uu -+ %Jb -+ %Ur:
1 1 1
— 55‘,-14—5(75"—556'.
Poa =~ Ppp >~ Pec
~ Pabe = Papc V) = () + AV
. : 1 1
By preparation noncontextuality = (A + 5up(N)
1 1
HaA(X) = upp(X) = pec(N) = eV +Ho(D)
= ftabe(A) = papc(N) — %#.Q(A) + %ﬁ_b(g) + %#.C(,\)
=v(N) 1 1 1
Pirsa: 04100017 — é_,”A()\) —I— 5“5(}‘) —}— g%ﬁgs{gé.)



Qur task is to find
.-u*ﬂ-()\)r tu:l(}‘)l P"rfi()\)l

pB(A), pe(A), pe(A),
and v(A) such that

tra(A) P'*A(A) = 0
up(A) pp(A) = O
pe(A) pe(A) = 0
1 1
v(\) = %ﬁia(}*)+gﬁﬂ()‘)
= E;;,b(/\)‘FEHB(A)
= %;ﬂc(}a)-l-%ﬂfr()\)
= Zpa(N) + 2p(N) + =pae(N)
?ﬁiu ?iﬁb BIJ‘C

1
= 3#aA) + Zup(A) + Juc().

3 3

Pirsa: 04100017
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Qur task is to find
.-U*ﬂ-()‘)r ﬂ.—l(}‘)l p’b(}‘)r

pB(A), pe(A), pe(A),
and v(A) such that

pa(A) pa(A) = O
up(A) () = 0
!'Jfr:()\) !'-*5'(2'(}“) = 0
v(A) = %pa()\)-l-%ﬁ,q()i)
= S+ up()
= %Hc(/\) +%P’*C’(/\)
1 1 1
— §,ua()s) —|—§1,ub(}t)+§ﬁc(}*)

1
= 3#aA) + Zup(A) + Juc().

3 3

Pirsa: 04100017

i.e., paralleling the
quantum structure:

|
o

{Tagi,;l

|
O

9p9B

Ucﬂ'C:’

|
o

1 1
cha-l-afm
1 n 1
— o -
2 0T "B
1 1
— Eﬂ'c:+§0’c
1 1 1
= gcra-l-écrb-l-gac
1 i | 1
= —0 —a —|——{T T,
3 _»1+3 BT 39C

1/2
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Our task is to find
.-u*ﬂ-(}‘)r :u:l(}‘)l #‘b()\)r

(), pe(A), pc(A),
and () such that

pa(X) pa(A) = 0O
up(A) pp(A) = O
pe(A) pe(A) = 0
U()\) = %,ﬂa()\) + %JU_.J. (}‘)
= S+ Sup()
= %;tc(/\) + %H-c(/\)
— %;_LA(}\) + é;ig()\) + %.U-C(}‘)

irsa: 04100017
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Our task is to find Suppose

pa(A), :u‘-—l(}‘)- P'fb()\)- pa(A) Then we obtain
nB(A), e(A), pc(A), pp(A) = 0 the all-zero solution
aﬂd U(/}\) SUCh that _.tbc(/\) = 0
Hﬂ,(/\) ﬂf‘l(/\) = 0
up(A) pp(A) = O
pe(A) pe(A) = 0
) = Zpa(N) + 2pa(V)
L = %,U:a %Ju_-'—)'.
= Efﬁb(/\)nLEHB(?\)
1 1
— iﬁic(}*)‘FEH{?(/\)
= Zua(N) + 2p(N) + =pe(N)
:{,ﬁa ?iiub 3#'!--

1
— 5,‘-5‘4(}*) + 5!*‘-3()\) + gﬁi-(?(f\)
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Our task is to find Suppose

o alA) = 0 _
Ha(A), pa(A), pp(X), Ha(2) Then we obtain
uB(A), pe(A), po(A), pp(A) = 0 the all-zero solution
and U(/}\) SUCh that _.tL{r(/\) = 0
#a(X) pa(y) = 0 Suppose e
pp(A) pp(A) = 0 pa(A) = 0 V() = V)
— 1
pe(A) pc(A) = 0 Hp(N) 0 — E:U'C(A)'
pc(A) = 0
: 1 Thus puc(A\) =0
v(A) = 5%('\) "‘5%4(}‘) Again yielding the all-zero solution
1 1
= 5%(/\)+§HB(?\)
1 1
= 5,“«2(}*) ‘|‘§H-{?()\)
= 20N + 2N + 2N
— :i%#a. Biﬁb 3#1?

Pirsa: 04100017

1
5}’--’:4(/\) + §H-B(/\) + gﬁi-(?(f\)
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Our task is to find Suppose

b alr) = 0 .
Ha(A), pa(A), (M), Ha(A) Then we obtain
pp(AX), pc(A), .“f(_?(/\)r pp(A) = 0 the all-zero solution
and U(/}\) SUCh that _.tL{r(/\) = 0
Then
Ha(A) pa(A) = 0 Suppose 1
p(N) up(\) = 0 pa() =0 )= guely
— |
pe(X) pe(A) = 0 ip(A) =0 = neW).
pc(A) = 0
1 1 Thus puc.(A\) =0
v(A) = 5!“‘1(’\) i 5!”-4(}‘) Again yielding the all-zero solution
1 1
— Efib(/\) + §HB(/‘\) a,
1 1 By symmetry, /’/-R%
= HeN) +3rc(N) all other cases %%
1 1 1 are similar
‘;’ﬁ()+?i”b()+3f() : .
— 5,‘-5‘4(}*) + 5!*‘-3()\) & gﬂ-{?(/\) 2
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Our task is to find Suppose

¥ a(A) = 0 .
Ha(A), pa(A), (), & (/\) _ G Then we obtain
pp(A), pe(A), pc(X), pp(A) = the all-zero solution
and U(/}\) SUCh that ..U;r;(/\) = 0
Ha(N) 1a(N) = O Suppose bl
up(A) () = 0 pa(A) = 0 V() = N
— 1
pe(A) pc(A) = 0 Hp(A) y — EH-‘:(/\)'
nc(A) = 0
. : Thus puc(A\) =0
v(A) = 5%(’\) + 5#;4(}‘) Again yielding the all-zero solution
1 1
— E,u,b(/\) + 5,”*3()\) a
1 1 By symmetry, /’/-R%
= D) +5u0(N) all other cases %%
1 1 1 are similar
:i%#()‘|‘?iﬁb()+3f() p :
— 51-5‘4()*) + 5!*‘-3()\) + gﬁi-(?(}‘) o

irea: 04100017 For all A, we have the all-zero sglution




Our task is to find Suppose

Ha(A), pa(A), pp(A), Ha(A) B Then we obtain
#B()\)s Pﬂc(/\)p H(_L"(/\)r pp(A) = 0 the all-zero solution
and U(/}\) SUCh that ..U;r;(/\) = 0
Then
Ha(A) pa()) = 0 SHRPES I
u(N) np(3) = 0 pa() = 0 V) = )
— 1
pe(A) pc(A) = 0 Hp(N) 0 — E:U'C(A)'
pc(A) = 0
1 1 Thus puc(A) =0
v(A) = 5*‘5‘1()‘) + 5”-4(}‘) Again yielding the all-zero solution
1 1
— Efib(/\) + §HB(/‘\) a,
1 1 By symmetry, /’/-R%
= He) +3rc(N) all other cases %%
1 1 1 are similar
%ﬁc)+3iab()+3f()
— 51-5‘4(}*) + é!f-ﬁ()\) + gﬂ-{?(}‘) 7
irea: 04100017 For all A, we have the all-zero sglution

CONTRADICTION



Proof of contextuality for unsharp

measurements

(an unsharp-measurement noncontextual
ontological model is impossible)

Pirsa: 04100017



The assumption of outcome determinism for a measurement

xXm.1(A)
XMk -S2—0or1 o .\
_. .
>k XMe(A) =1 for all . - )
xXMm,3(A) L

In our language,
traditional notion of noncontextuality
= noncontextuality for sharp measurements
+ outcome determinism for sharp measurements

The traditional notion of noncontextuality concerns whether

outcomes depend on the context
The generalized notion of honcontextuality concerns

whether probabilities of outcomes depend on the context

Page 69/92

"*NBhcontextuality and determinism are separate issues



However,

Qutcome determinism does not seem to be a natural
assumption for unsharp measurements

Also, preparation noncontextuality
implies outcome determinism for sharp measurements

Thus, no-go theorems for the traditional notion of
noncontextuality are still no-go theorems for universal

noncontextuality

Pirsa: 04100017 Page 70/92




Proof of contextuality for unsharp
measurements in 2d

Ma' N {PQ,P‘J‘}
Mb N {Pf)r PB}

Me — {P(.'.: PC'}
P, projects onto P,

P a + P A — I P B PC
Pb —|— PB —2 |

FPe+Pc = 1

P, o

P[IPf1 — O

P,Pg = 0 Fa

PCPC

o

Pirsa: 04100017




Proof of contextuality for unsharp
measurements in 2d

Mg < {XG()\)a XA(}‘)}
My < {xp(A),xB(A)}
Me < {Xxcn)xc(N)}

By definition

Ma_ — {PQ,PA}
My, = {Pf)r PB}
M(: — {P(_'_g PC'}

P, projects onto 1, Pa xa(A) +xa(\) =1
Po+Py = 1 pp Pc xp(A) +xp(A) =1
iy xeO) +xe(V) =1
Pe+Po = 1

P. b
FoPy = 0
P,Pg = 0 Pa

P(_'-PC e

|
o

Pirsa: 04100017




Proof of contextuality for unsharp

measurements in 2d

Mg — {Pg, Pfq}

M, N {Pb: PB}

Me < {F, P}
P, projects onto v P,

P.f_‘[. _I_ P;I’l —
F, + Pp
FPe+ Po =

|
—_—
o

|
b~

P{IP;"{ —
PP =
PC'PC —_—

|
© O o
S

irsa: 04100017

Mg < {Xa()\)a XA(}*)}

My = {xp(A); xB(A)}

Me = {Xcn) xe(M)}

By definition
Xa(A) +xa(X) =1
Xp(A) +xB(A) =1
Xc(A) +xc(A) =1

By outcome determinism for
sharp measurements

Xa(A)xa(A) = O
xp(A)xB(A) 0
Xc(AN)xo(A) 0

ThUS, {Xl(;\)uXX(’\)} Page 73/92
= {0,1} or {1,0} for every A\.




M = implement one of My, M, and M. with
prob. 1/3 each, register only whether first or
second outcome ocurred

Page 74/92
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M = implement one of My, M, and M. with
prob. 1/3 each, register only whether first or
second outcome ocurred

M« {3Pa+3P+ 3P 3Pa+3Pe+3FPc)

Page 75/92
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M = implement one of My, M, and M. with

prob. 1/3 each, register only whether first or

second outcome ocurred

M  — {3Pa+ 3P+ 3P 3Pa+3Ps+3FPc)

M o {3+ +H3xe(N), 3xaN)+3xs(N)+H3xc (M)}

Page 76/92
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M = implement one of My, M, and M. with
prob. 1/3 each, register only whether first or
second outcome ocurred

1 1 1 1 1 lp _—rls1
M« 3Pt 3B+ 3P.3PAa+3Ps+3Pct ={51,51}
M o {3xaMW)+F3xN)+H3xe(N), 3xaN)+3x8(N)+H3xc (M)}

Page 77/92
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M = implement one of My, M, and M. with
prob. 1/3 each, register only whether first or
second outcome ocurred

M  — {3Pa+3P+3P,3Pa+3Ps+3Pc} = {3151}
M o {5xaM)+H30N)+F3xe V), 3xaN)+H3x8(N)+H3xc (M)}

M = ignore the system, flip a fair coin
y o fl71
M {31,51}

Pirsa: 04100017 Page 78/92




M = implement one of My, M, and M. with
prob. 1/3 each, register only whether first or
second outcome ocurred

M — {3Pa+3P+35P,5Pa+ 5P+ 3P0} ={31,5I}
M o {3xa)+F3xeN)+3xeN), 3xaN)+3xs(N)+3xc(W)}
M = ignore the system, flip a fair coin

Mo e {31300

- 1 1
M — {j=§}

Pirsa: 04100017 Page 79/92




M = implement one of My, M, and M. with
prob. 1/3 each, register only whether first or
second outcome ocurred

M — {3Pa+3P+35P.3Pa+ 5P+ 3P0} ={31,5I}
M o {3xaMN)+5000)+3x (), 3xaN)+3x8(N)+3xc (M)}
M = ignore the system, flip a fair coin

Mo e {31300

= 1 1

M > {j= j}

By the assumption of measurement noncontextuality

¥ 1 1 1 1 1 1 11
M~M —> {3Xa+3Xp+ 3Xe 3Xa + 3xB + 3Xx0} = {53}

Pirsa: 04100017 Page 80/92




Proof of contextuality for unsharp

measurements in 2d

Ma —  {P4, Py}

M, N {Pb: PB}

Mc < AP, Pot}
P, projects onto v, P,

P.f_‘[. _I_ P;I’l —
F, + Pp
FPe+ Po =

|
—_—
o

|
b~

P{IPA =
P,Pg =
PCPC —_—

|
O O O
S

irsa: 04100017

Mg H{Xa()‘)aXA(}*)}

Mp < {xp(A), xB(A)}

Me < {xcn): xc(N)}

By definition
Xa(A) +xa(A) =1
xp(A) +xp(A) =1
xe(A) + xc(A) =1

By outcome determinism for
sharp measurements

Xa(A)xa(A) = O
xp(A)xB(A) 0
Xc(AN)xo(A) 0

ThUS, {XL(A)-JXX(A)} Page 81/92
= {0,1} or {1,0} for every A\.




M = implement one of My, M, and M. with
prob. 1/3 each, register only whether first or
second outcome ocurred

M« {3Pat 3P+ 3P, 3Pa+3Pp+3Pct = {3131}
M o {3xa)+F3xe(N)+3xeN), 3x 4N +3x(N)+3xc(V)}

M = ignore the system, flip a fair coin
v R i |
M {31,51}

- 1 1
M — {j=§}

By the assumption of measurement noncontextuality

N[ =
N =
-

M=~M —> {Ixa+ 3X6 + 3Xe 3x4 + 3xB + 3x0} = {
But {Oj 1}:{ } {1 O} {3:3} ;é {2?2
CONTRADICTION
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Proof of transformation contextuality

(a transformation noncontextual
ontological model is impossible)

It's similar...

Pirsa: 04100017



Summary

We have generalized the notion of contextuality to:

(1) arbitrary operational theories

(2) preparations, transformations, and unsharp
measurements

(3) indeterministic ontological models

We have provided proofs of contextuality for preparations,
transformations, and unsharp measurements in quantum
theory for a 2D Hilbert space
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Relevance of these results to the
hidden variable program

Perhaps surprisingly, these results do not provide support
for the idea that the quantum state is a complete
description of reality (just as Bell's theorem does not)
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Relevance of these results to the
hidden variable program

Perhaps surprisingly, these results do not provide support
for the idea that the quantum state is a complete
description of reality (just as Bell's theorem does not)

Whether it is complete or not, quantum theory is still
nonlocal
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Relevance of these results to the
hidden variable program
Perhaps surprisingly, these results do not provide support

for the idea that the quantum state is a complete
description of reality (just as Bell's theorem does not)

Whether it is complete or not, quantum theory is still
nonlocal

Whether it is complete or not, quantum theory is still
(preparation) contextual

Pirsa: 04100017




Within a hidden variable approach,
IS contextuality mysterious?

Yes.
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Within a hidden variable approach,
IS contextuality mysterious?

Yes.

» [t complicates the explanation of the reproducibility of
sharp measurements (particularly if one assumes that
hidden variables of the apparatus affect the outcome)




Within a hidden variable approach,
IS contextuality mysterious?

Yes.

» It complicates the explanation of the reproducibility of
sharp measurements (particularly if one assumes that
hidden variables of the apparatus affect the outcome)

*There is a tension between
the dependence of representation on certain details of the

experimental procedure

and
the independence of outcome statistics on those details of

the experimental procedure




Relevance to axiomatics

A restriction on knowledge can reproduce qualitatively a
vast array of quantum phenomena including
-Noncommutativity

-Interference

-No-cloning

-Features of entanglement

(See Hardy quant-ph/9906123, Kirkpatrick quant-ph/0106072,
Spekkens quant-ph/0401052)

Contextuality is one of the missing phenomena

Thus contextuality is a valuable clue for identifying the
additional conceptual innovations required to derive
efuantum theory (if this is possible)
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Relevance to qguantum information

Many quantum information tasks that outperform their
classical counterparts exist in local and noncontextual
theories. Ex: key distribution, partially secure bit
commitment, dense coding, etc.

However, Bell correlations are necessary to achieve
better-than-classical results in certain communication
complexity problems

Do any quantum information tasks rely on contextuality for
their improvement over their classical counterpart?
-Random access codes? (See Galvao quant-ph/0212124)
-Quantum computation?
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