Title: Anthony Leggett - Thoughts on the future of Physics.

Date: Oct 02, 2004 02:00 PM

URL: http://pirsa.org/04100003

Abstract: 2003 Nobel Prize Winner shares thoughts on the future of physics. <kw>Anthony Leggett, quantum mechanics, wave, particle, quantum liquids, superconductivity, De Broglie relation, Cooper\'s pair, Schrodinger cat, many-bodies </kw>

Pirsa: 04100003 Page 1/63

PERIMETER INSTITUTE FOR THEORETICAL PHYSICS

Pirsa: 04100003

TEMPERATURE, ORDER and DISORDER

HIGH TEMPERATURE	LOW TEMPERATURE
LIQUID	SOLID
/\.	11111
11111	
PARAMAGNETIC	11111
	11111
	FERROMAGNETIC
DISORDERED ALLOY	ORDERED ALLOY

PARTICLES AS WAVES

For Particles:

"DE BROGLIE RELATION"

PARTICLES AS WAVES

1.4

For Particles:

"DE BROGLIE RELATION"

When does a "wave" behave like a "particle"?

since $\lambda = h/mv$ (De Broglie) need

Why "Quantum Liquids"?

• ←a →•

Gas: (usually)

 $\lambda \ll a$ so no "wave" (quantum) effects

Solid at low T:

 $\lambda \gtrsim$ a but atoms don't change places

Liquid at low T:

 $\lambda \gtrsim a \ \underline{and}$ atoms change places

 $T \lesssim 20^{\circ} \text{ K/(Atomic No.)}$

"QUANTUM STATISTICS"

1.7

K16

AMERICAN
ASSOCIATION FOR THE
ADVANCEMENT OF
SCIENCE

SCIENCE

22 DECEMBER 1995 VOL 270 - PAGES 1893-2064

\$7.00

Molecule of the Year

> Bose-Einste Condensate

22 DECEMBER 1993 VOL 270 - PAGES 1893-2064 \$7.00 Molecule of the Year Bose-Einiani Condensate

TKIGH

AMERICAN
ASSOCIATION FOR THE
ADVANCEMENT OF
SCHENCE

SCIENCE

22 DECEMBER 1995 VOL 270 - PAGES 1893-2064

\$7.00

Molecule of the Year

> Bose-Elii Condensal

HOW TO SEE BEC OCCURRING? LITERALLY

HOW TO SEE BEC OCCURRING?

LITERALLY

Direct 0.4100003

1.10a

HISTORY OF THE HIGHEST TEMPERATURE ("T,") AT WHICH SUPERCONDUCTIVITY KNOWN

PHYSICS OF SUPERCONDUCTIVITY

0, 1, 2.... bosons $\frac{1}{2}$, $\frac{3}{2}$, $\frac{5}{2}$ fermions

At low temperatures:

← "Bose condensate"

Electrons in metals: spin ½ ⇒ fermions

But a compound object consisting of an even no.

of fermions has spin 0, 1, 2 ... = boson.

(Ex:
$$2p + 2n + 2c = {}^{4}He$$
 atom)

=> can undergo Bose condensation

Pairing of electrons:

In simplest ("BCS") theory, Cooper pairs, once formed, must automatically undergo Bose condensation!

⇒ must all do exactly the same thing at the same time (also in nonequilibrium situation)

Pairing of electrons:

In simplest ("BCS") theory, Cooper pairs, once formed, must automatically undergo Bose condensation!

== must all do exactly the same thing at the same time (also in nonequilibrium situation)

rairing of electrons:

In simplest ("BCS") theory, Cooper pairs, once formed, must automatically undergo Bose condensation!

= must all do exactly the same thing at the same time (also in nonequilibrium

Account given by quantum mechanics:

Each possible process is represented by a probability amplitude \(\mathcal{A} \) which can be positive or negative.

- Total amplitude to go from A to E = sum of amplitudes
 for possible paths, i.e. A→B →E and/or A→C→E
- Probability to go from A to E = square of total amplitude.

A ------t -ive- by question machanics

Each possible process is represented by a probability amplitude \(\mathbb{A} \) which can be positive or negative.

- Total amplitude to go from A to E = sum of amplitudes
 for possible paths, i.e. A→B →E and/or A→C→E
- Probability to go from A to E = square of total amplitude.

at given by quantum mechanics:

h possible process is represented by a probability amplitude A ich can be positive or negative.

Total amplitude to go from A to E = sum of amplitudes

for possible paths, i.e. $A \rightarrow B \rightarrow E$ and/or $A \rightarrow C \rightarrow E$

A to E = square of total amplitude.

1. If C shut off: $A_{tot} = A_B \Rightarrow P = A_B^2 \blacktriangleleft P_B$

2. If B shut off: $A_{tot} = A_C \implies P = A_C^2 \blacktriangleleft P_C$

3. If both paths open:

 $A_{tot} = A_B + A_C \leftarrow "SUPERPOSITION"$

$$\Rightarrow$$
 P = $A_{tot}^2 = (A_B + A_C)^2 = A_B^2 + A_C^2 + 2 A_B A_C$

$$= P_B + P_C + 2A_BA_C \leftarrow "interference" term$$

$$\Leftarrow P_{B \text{ or } C}$$

TO GET INTERFERENCE, AB AND AC MUST SIMULTANEOUSLY "EXIST" FOR EACH ATOM

1. If C shut off: $A_{tot} = A_B \Longrightarrow P = A_B^2 \blacktriangleleft P_B$

2. If B shut off: $A_{tot} = A_C \implies P = A_C^2 \blacktriangleleft P_C$

3. If both paths open:

 $A_{tot} = A_B + A_C \leftarrow "SUPERPOSITION"$

$$\Rightarrow$$
 P = $A_{tot}^2 = (A_B + A_C)^2 = A_B^2 + A_C^2 + 2 A_B A_C$

$$= P_B + P_C + 2A_BA_C \leftarrow "interference" term$$

$$\not \Leftarrow P_{B \text{ or } C}$$

TO GET INTERFERENCE, AB AND AC MUST SIMULTANEOUSLY "EXIST" FOR EACH ATOM

If
$$A_B = + A_C$$
, $P_{B \text{ or } C} = P_B + P_C + 2A_B^2 = 4P_B = 2(P_B + P_C)$

If
$$A_B = -A_C$$
, $P_{B \text{ or } C} = P_B + P_C - 2A_B^2 = P_B + P_C - 2P_B = 0$

If $A_B = \pm A_C$, at random

P_{BorC} = P_B + P_C ← "COMMON SENSE" RESULT

WHEN AB AND AC SIMULTANEOUSLY "EXIST", NEITHER B NOR C "SELECTED".

In quantum mechanics, it state τ — state τ and state $2\to 2^\circ$, then superposition of t and $2\to$ superposition of τ and 2°

Hars. 8 → cat sive C → cat dead

superposition of B and C → superposition of save and said

ampl (at sive) × 0
ampl (at dead) × 0

In quantum mechanics, if state 1 \rightarrow state 1' and state 2 \rightarrow 2', then superposition of 1 and 2 \rightarrow superposition of 1' and 2'.

Here, $B \rightarrow cat alive$ $C \rightarrow cat dead$

superposition of B and C → superposition of "alive and "dead"!

Le.

ampl (cat alive) = 0
ampl (cat dead) = 0

In quantum mechanics, if state 1 \rightarrow state 1' and state 2 \rightarrow 2', then <u>superposition</u> of 1 and 2 \rightarrow superposition of 1' and 2'.

Here. $B \rightarrow cat alive$ $C \rightarrow cat dead$

superposition of B and C → superposition of "alive and "dead"!

i.e.

ampl (cat alive) = 0 ampl (cat dead) = 0

Some "resolutions" of the Cat paradox

(a) Assume quantum mechanics is universal

(i) Orthodox* resolution

Recall:

$$P_{s=c} = P_s + P_c + 2A_sA_c \leftarrow$$
 "interference" term

If A = = A at random,

averages to zero

$$P_{B \to C} = P_{B} + P_{C} + 2\overline{A_{B}A_{C}} = P_{B} + P_{C}$$

Effect of "outside world" is, generally speaking, to randomize sign; more effective as system gets larger.

- interference term vanishes for "everyday" objects (cats!) ("decoherence")
- => each system chooses either B or C?
- (ii) extreme statistical
- (iii) "many-worlds"

PERIMETER INSTITUTE FOR THEORETICAL PHYSICS

Pirsa: 04100003

ROOM TEMPERATURE -

PERIMETER INSTITUTE FOR THEORETICAL PHYSICS

Pirsa: 04100003 Page 63/63