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9 THE FATE O DARK ENERGY

The concordance of CMB, LSS and SNela data
lead to the values Qx ~ 0.7 and Qp7 ~ 0.3.

One question is: to what extent can precision
cosmological data allow us to discriminate be-
tween possible future fates of the Universe?

If one assumes that §2x corresponds to a cosmo-
logical constant with equation of state given by
w = p/p = —1 then the future evolution of the
universe follows from: the Friedmann equation:

. v q

a grGp A
= —— 4

[u) 3 4 3 ( )

in which a(t) is the scale factor normalized at
the nresent time as a(tp) = 1, p(t) = {J(U)a_‘s in
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In such a simple, aua o viable, case the be-
havior of a(t) asymptotically for large ¢ — 00
1S

A
{
\ 3 (5)

so that dark energy asymptotically dominates
and the Universe is blown apart in an infinite
time a(t) — oo as t — 00.

a(t) ~ exp

Fven assuming a constant equation of state
w = p/p there is a wide spread in the range
of allowed w with an upper limit of w ~ —0.8
and a lower limit conservatively w = —2.

Note that the earliest WMAP analysis in
agtro-ph/0302207 used a prior that w = —1.
The relaxation of this prior is awaited to find

reaooez b etr Jower limit on w. A
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'he future fate ol thic Jark energy ranges from
a diverging scale factor at a finite future time
to a disappearing dark energy with reversion to
domination by “ordinary” matter a ~ ¢2/3,

Constant equation of state

Keeping only the dark energy term:

‘)

‘a\* -

[ ] — H2Qya P (6)
a

where 8 = 3(14+w). Whenw < —1, # < 0 and
the solution of Eq.(6) diverges at a finite time
t = t*. Imv;u‘uling

4;‘;;‘:”“:5/2 ' = Ho/Qx £ dt (7)
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'he future fate of the dark energy ranges from
a diverging scale factor at a finite future time
to a disappearing dark energy with reversion to
domination by “ordinary” matter a ~ t2(3*

Constant equation of state

Keeping only the dark energy term:

AW .
[”’] = HiQxa P (6)
a
where 8 = 3(1+w). Whenw < —1, 8 < 0 and

the solution of Eq.(6) diverges at a finite time
t = t*. Integrating
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IKeeping only the dark energy term:

s |
(“} = ”(%qu A (6)

(1

where 8 = 3(1+w). Whenw < —~1, 3 < 0 and
the solution of Eq.(6) diverges at a finite time
¢ = t*. Integrating

4/[*)— | ft ~—
[;ﬁ”) Hf-}/z l = [{(]fQX [fn dt (f)

one finds the remaining time tr = (t* —tp) 18

given by:
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the remaining time before the scale factor di-
verges which is:

oy 1 ol 1Gyr (®)
~ 3HpOx(—w-1) (~w-=1)

In Eq.(8), putting in Qx = 0.7 and 2/(3Hp) =

by

9.2Gyr one finds for w = —1.5, —2 respectively
tr = 22Gyr, 11Gyr. In the more extreme case
w = —2.5, one finds ¢, = TGyr.

Note that the Sun will transform into a Red
Giant, and swallow the Earth, approximately 5
Gyr from now.

Gravitationally-bound systems could survive
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longer than ¢ given by Eq.(8) but such systems




the remaining tinie before the scale factor di-
verges which 1s:

; 2 | TGy (3)
. 3HoQOx(-w—1) (—w-—1)

In Eq.(8), putting in Qx = 0.7 and 2/(3Hp) =

9.2Gyr one finds for w = —1.5, —2 respectively
= 22Gyr, 11Gyr. In the more extreme case
w = —2.5, one finds tp = TGyr.

Note that the Sun will transform into a Red
Giant, and swallow the Earth, approximately 5
Gyr from now.

Gravitationally-bound systems could survive
longer than ¢, given by Eq.(8) but such systems
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Equation of State Varying Linearly with Red-Shill

As a more general ansatz, we consider the
model for the EoS depending linearly on red-
shift: ‘

w(Z) = w(0) +CZ0(¢C—2Z)+C¢O(Z —C) (9)

where the modification is cut off arbitrarily at
some Z = ¢ > 0. We assume C < 0 and
consider the two-dimensional parameter space
spanned by the two variables w(0) and C.

As input data we use the CMB spectrum and
CMBFAST. Also we simultaneously make &
fits to the SNelA data.

To set the stage, let us first use only the
gNelA data to constrain the parameters w(0)

P TR " g, o—— W ) I‘vl}.{lll*(}
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(1) w(0) < (C—1) I this case there is an end
of time. at a finite futie time.

(I(C — 1) < w(0) < C. Here the lifetime of
the universe is infinite. The dark energy domi-
nates over matter, as now, al all future times.
(1I1) C < w(0). The lifetime of the universe 18
after a finite time the dark en-
ar relative to the dark matter
i1l be re-established

again infinite but
ergy will disappe
and matter-domination W
with a(t) ~ t2/3.
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When we add the constraints imposed by the
CMB data, the allowed region is smaller as
shown in Figure 2, plotted for ¢ = 0.5. Such
a small ¢ still allows all three future possibili-
ties (I), (II) and (III). For somewhat larger ¢
only possibilities (I) and (II) are allowed in this
particular parametrization.

The case ¢ = 2 is exhibited in more detail for
different values of w(0) and C' in Figures 3 and
4,

Figure 3 shows the variation of the transi-
tion red-shift Z,4ns where deceleration changes
to accelerated cosmic expansion defined by
fI(ZtTrms) = 0.

Figure 4 shows the corresponding fits to the

Page 45/127




t\ 10%-,‘““ o
- "\JI.

L“ three
For sOME

nd (11) &7 o

ation:

p—

futul C

Pirsa: 04090002

’ -.mﬂat'lon 0

p{)ﬁ‘, "!k)

\ab \ar &_)t“l C
r{"(\ \P‘ lhl

‘[11 (1\\{‘ f |

gueh
-

et fox
08 5 {Lu{i

h e LY allﬁ'i‘
" f‘hﬂﬂ%ﬂﬁ

wih)

0

Page 46/127




Pirsa: 04090002

L‘!

Page 47/127




0.7
0.6
0.5
0.4
0.3
(.2

0.1

Pirsa: 04090002

0

Fig. 3

{_::_'”
¢=-0.5

c=-]
E:'_ 1 15
i i i

Page 48/127




0.7

0.6 |

0.5

o e

0.2

il b

Pirsa: 040

i

U5

]

c=

cm-0.5

c=-1
c=-1.5

Page 49/127




Equation of State Varying Linearly with Red-Shift.

As a more general ansatz, We consider the
model for the EoS depending linearly on red-
shift:

w(Z) = w(0) +CZ0(C—Z)+C¢0(Z—C) (9)

n is cut off arbitrarily at
We assume C < 0 and
nsional parameter space
iables w(0) and C.

he CMB spectrum and
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Fig. 4
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To return to our main point, let us assume that

more precise cosmological data will allow an &p—
proximate determination of w(Z) = f(Z) as
function of Z for positive Z > 0. Then to 111118—
trate the possible future evolutions write:

w(Z) = [(Z)0(Z )+ (f(0) + aZ)0(—Z) (10)

In this case, the future scenarios (I), (II) and
(IIT) occur respectively for a > — f(0) > 0,
—f(0) > a > —f(0) — Land @ < —f(0) = 1.

Present data are consistent with a simple cos-
mological constant f(Z) = —1 in Eq.(10) in
which case the end of time scenario occurs for
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To return to our main point, let us assume that
more precise cosmological data will allow an ap-
proximate determination of w(Z) = f(Z) as a
function of Z for positive Z > 0. Then to illus-
trate the possible future evolutions write:

w(Z) = f[(2)0(Z) + (f(0) + aZ)0(—Z) (10)

In this case, the future scenarios (I), (II) a
(I11) occur respectively for a > —f(0) >
—f(0) > a>—f(0)—1and a < —f(0) =1

Present data are consistent with a simple ¢
mological constant f(Z) = —1 1
which case the end of time scenar
« > 1, the infinite-time dark
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To return to our main point, let us assume that
more precise cosmological data will allow an ap-
proximate determination of w(Z) = f(Z) as a
function of Z for positive Z > 0. Then to illus-
trate the possible future evolutions write:

w(Z) = f(Z2)0(Z) + (f(0) + aZ)0(—Z) (10)

In this case, the future scenarios (I), (II) and
(I1I) occur respectively for a > —f(0) > 0,
—f(0) > a>—f(0)—land a < =f(0) — 1.
Present data are consistent with a simple cos-
mological constant f(Z) = —1 in Eq.(10) in
which case the end of time scenario occurs for
« > 1, the infinite-time dark energy domination
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3. Stability Issues for w < ~1 Dark Energy

Precision cosmological data hint that a dark
energy with equation of state w = P/p < =1
and hence dubious stability is viable, Here we
discuss for any w nucleation from A > 0 to
A = 0 in a hrst-order phase transition, The
eritical radins s argued to be at least of galae
tic size and the con l't“ﬁ]‘fﬂlhlill}i nucleation rate
glacial, thus underwriting the dark energy's sta
bility and rendering remote any microscopic ef
fect.
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3. Stability Issues for w < —1 Dark Energy

Precision cosmological data hint that a dark
energy with equation of state w = P/p < -1
and hence dubious stability is viable. Here we
discuss for any w nucleation from A > 0 to
A = 0 in a first-order phase transition. The
critical radius is argued to be at least of galac-
tic size and the corresponding nucleation rate
glacial, thus underwriting the dark energy’s sta-
bility and rendering remote any microscopic ef-
fect.
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Interpetation as a limiting velocity

Consider making a Lorentz boost along the 1-
direction with velocity V' (put ¢ = 1). Then the
stress-energy tensor which in the dark energy
rest frame has the form:

(T 0 00
0w 0 0
00 w0
100 0 w)

I]},{u — A

!
is boosted to 7, given by
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T,uu:/\

= A\

81 V.00
V100
00 150

RUNGRO'T |

0
E 0
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Ow 0 0
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a() 0 0 w |

(1+ V2w V(14+w) 0 0)
V(1 + w) Véitw 0 0

0 w
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We learn several things by studying this.
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We learn several

Bl V 00)
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by studying this.
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We learn several things by studying this.
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First, consider the encrgy component Toy =
9

1 + V4w. Since V < | we see that for w >

S . ,. o4

1 this is positive Tog > 0 and the WEC 18
‘ il |

respected. Forw = —1, Too — 0asV — 1 and

is still never negative. For w < —1, however,
we see that '{I)U < 0if V2 > —(1/w) and this
s the first sign that the case w < —1 must be
studied with great care. Looking at the pressure
component T;l we see the special role of the
case w = —1 because W = ’I’{l/T;}“ remains
Lorentz invariant as expected for a cosmological
constant. Similarly the off-diagonal components
T[’}'l vanish only in this case.
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One alternative is that it is impossible for Ve >
—(1/w). The highest velocities known are those
for the highest-energy cosmic rays which are
protons with energy ~ 1020¢V. These have
e (] — V?) 1/2 . 10" corresponding to
V ~ 1 — 10722, This would imply that:

w>—1-10 22

which is one possible conclusion.
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One alternative is that it is impossible for Ve >
—(1/w). The highest velocities known are those
for the highest-energy cosmic rays which are
protons with energy ~ 102¢V. These have
e (1 — V?‘)_l 2 ~ 10" corresponding to
V) — 1022, This would imply that:

w > —1— 10_“22

which is one possible conclus
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One alternative is that it is impossible for Ve >
—(1/w). The highest velocities known are those
for the lugjheht-enorgy cosmic rays which are
protons with ene }:y ~ 10%V. These have
v = (1 - V‘2 ~ 10" corresponding to
V ~ 1 — 10 22 This would imply that:

w> —1-— 1()"_22

which is one possible conclusion.
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One alternative is that it 18 impossible for VZ>
—(1/w). The highest velocities known are those
for the highest-energy cosmic rays which are
protons with energy ~ 102%V. These have
v o= (1 - 72 1/2 101 corresponding to
V ~ 1 — 10722, This would imply that:

> —1 — R

which is one possible conclusion.
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Interpretation as Vacuum Instability.

But let us suppose, that more precise coSmo-
logical data reveals a dark matter \\'hi-:‘*ll has w
significantly below - l..} Then, by boosting 1.1'} an
nertial frame with V* > —(1/w), one arrives
at T.-:.l ~ 0 and this would be a signal for vac-
uuIm inb«tnlulny. If the cosmological background
i« a Friedmann-Robertson-Walker (FRW) met-
ric the physics is Lorentz invariant mu-l S0 one
should be able to see evidence for the instabil-
itv already in the preferred frame where T}, has
Too > 0.
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Interpretation as Vacuum Instability.

But let us suppose, that more precise COSINO-
logical data reveals a dark matter whit"h has w
significantly below —1. Then, by boosting t,l.) an
llu.'ltlnl frame with V2 > —(1/w), one arrives
at 'I}I“ ~ 0 and this would be a signal for vac-
uuIm illhi&l‘ﬂlit}-'. If the cosmological background
s a Friedmann-Robertson-Walker (FRW) met-
ric the physics is Lorentz invariant and so one
<hould be able to see evidence for the instabil-
ity already in the preferred frame where T}, has
Too > 0.

Page 73/127




Pirsa: 04090002

This goes back to work in the 1960’s and
1970’s where one compares the unstable vacuum
to a superheated liquid. = At one atmospheric
pressure water can be heated carefully to above
100° C without boiling. The superheated water
s metastable and attempts to nucleate bubbles
containing steam. However, there 1s an energy
balance for a three-dimensional bubble between
the positive surface energy ~ R? and the neg-
ative latent heat energy of the interior ~ R
which leads to a critical radius below which the
bubble shrinks away and above which the bub-
ble expands and precipitates boiling,
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For the vacuum the first idea in 1976 was
to treat the spacetime vacuum as a, four-
dimensional material medium just like super-
heated water. The second idea was to notice
that a hyperspherical bubble expanding at the
speed of light is the same to all inertial ob-
servers. This Lorentz invariance provided the
mathematical relationship between the lifetime
for unstable vacuum decay and the critical ra-
dius of the four-dimensional bubble or instan-
ton. In the rest frame, the energy density 1s

Too = N\ ~ (1()—3(?:‘/)rl ~ (mm)—““"

Page 75/127




Pirsa: 04090002

In order to make an estimate of the dark en-
ergy decay lifetime in the absence of a known
potential, we can proceed by assuming it is the
same Lorentz invariant process of a hyperspher-
ical bubble expanding at the speed of light, the
same for all inertial observers.

Let the radius of this hypersphere be R, its
energy density be ¢ and its surface tension be
S1. Then the relevant mstanton action 18

B o e
A=— Q?T‘zfzd'ﬁ 212 R° S|

where € and S are the volume and surface en-
ergy densities, respectively.
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In order to make an estimate of the dark en-
ergy decay lifetime in the absence of a known
potential, we can proceed by assuming it is the
same Lorentz invariant process of a hyperspher-
ioal bubble expanding at the speed of light, the
same for all inertial observers.

Let the radius of this hypersphere be R, its
energy density be € and its surface tension be
Sy. Then the relevant instanton action 18

E A4l .
= fzwzli‘lf +2m2 R3S,

where € and S are th ne and surface en-

ergy densities, respect]
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In order to make an estimate of the dark en-
ergy decay lifetime in the absence of a known
potential, we can proceed by assuming it is the
same Lorentz invariant process of a hyperspher-
ioal bubble expanding at the speed of light, the
same for all inertial observers.

Let the radius of this hypersphere be R, its
energy density be ¢ and its surface tension be
Sy. Then the relevant instanton action 18

. ~2?r21»‘§4£ +2m% R3S,

where ¢ and Sp are the volume and surface en-
ergy densities, respectively.
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The stationary value of this action is
27T 9ad 3
A«'m - T Sl/f
.
corresponding to the critical radius

1{1” —_ 331/(:

We shall assume that the wall thickness 1s neg-
lighle compared to the bubble radius. The num-
her of vacuum nucleations in the past lightcone
is estimated as

N = (%L&'i){::vyj(—ﬂ-rr-r.)

where V,, is the 4-volume of the past and A is
the mass scale relevant to the problem.
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This vacuum decay picture led to the propos-
als of inflation, for solving the horizon, flatness
and monopole problems (only the horizon prob-
lem was generally known in 1976). None of that
work addressed why the true vacuum has zero
energy. Now that the observed vacuum has non-
zero energy density +€ ~ (10 3eV)? we may
interpret it as a “false vacuum” lying above the
“rue vacuum” with € = 0.

In order to use the full power of the instanton
equations we need to estimate the three mass-
dimension parameters ¢ /4 Sll /3 and A therein.
Let us discuss these scales in turn.
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The easiest of the three 1O select is €. 1f we imag:
ine a tunneling through a barrier between & false
vacuum with energy density € to a true vacuurm
at energy density zero then the energy densit

inside the bubble will be € = A= (l()“"eV) :
No other choice 18 reasonable.
Next we discuss the typical
volved in the prefactor. The A does
not matter very much b ¢ 3 as a
power rather than an ' put
Awe/t= (lfn:irn)‘.1
in N is ~ 10116,
conclusions do not
The third and
face tension,

Pirsa: 04090002
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Spontancous dark energy decay brings us to
the question of whether such decay can be initi-
ated in an environment existing within our Uni-
verse. The question is analogous to one of elec-
troweak phase transition in high energy particle
collision. This was first raised in 1976 and re-
visited for cosmic-ray collisions. That was in
the context of the standard-model Higgs vac-
qum and the conclusion is that high-energy col-
liders are safe at all present and planned fore-
seeable energies because much more severe con-
ditions have already occurred (without disas-
ter) in cosmic-ray collisions within our galaxy.
More recently, this issue has been addressed
in connection with fears that the Relativistic
Heavy lon Collider (RHIC) might initiate a di-
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The dark energy density is some 98 orders
of magnitude smaller |(10 3eV) compared to
(300GeV)"] than for the electroweak case and
so the nucleation scales are completely different.
One is here led away from microscopic towards

astronomical size scales.
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We see that the critical radius cannot be mi-
crosopic. Think first of a macroscopic scale
e.g. 1 meter and consider a magnetic field
practically-attainable in bulk en Earth such as
10 Tesla. Its energy density is given by

1Y,
Pmag = NUBZ

Using the value pg = 4m X 10" "NA~? and
1T = 6.2 X l[]IIQ(MGV.S.‘M‘2) leads to an en-
ergy density pmag = 2-9 X IOI?BV/ (?rs*rra)3, over
20 orders above the value of Eq.() for the in-
terior of nucleation. Magnetic fields in bulk
exist in galaxies with strength ~ 1luG and
the rescaling by B? then would give pmag ~
(2.5% 10 S5eV)(mm) 3, slightly below the dark
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Assuming the dark energy can exchange en-
ergy with magnetic energy density the observed
absence of stimulated decay would then imply
a critical radius of at least galactic size, say,
~ 10kpe. Using Eq() then gives for the surface
tension S > 10%(mm) > and number of nu-
cleations in Eq.() N < exp(—10Y2). The spon-
taneous decay is thus glacial. Note that the dark
energy has appeared only recently in cosmolog-
ical time and has never interacted with back-
ground radiation of comparable energy density.
Also, this nucleation argument does not require
w < -1.
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One may speculate how such stability argu
ments may evolve. One may expect most. con
servatively that the value w = —1 will even-
tually be established empirically 1n which case
both quintessence and the “vhantom menace’
will be irrelevant. In that case, indeed for any
w. we may still hope that dark energy will pro
vide the first connection between string theory
and the real world as in e.g. the BF M stringy
dark energy. Even if precise data do establish
w < —1, as in the “phantom menac e’ scenarlo,
the dark energy stability issue 1s still under con
trol.
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Discussion

As a first remark, since the critical radius /1,
for nucleation is astronomical, it appears that
the instability cannot be triggered by any micro
scopic process. While it may be comforting to
know that the dark energy is not such a dooms
day phenomenon, it also implies at the same
time the dreadful conclusion that dark energy
may have no microscopic effect. If any such mi
croscopic effect in a terrestrial'experiment could
be found, it would be crucial in investigating
the dark energy phenomenon. We note that
the present arguments are less model-dependent
than those given elsewhere in the literature.
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