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Motivation

We all believe that SSRs and in the context of QI is worth
studying. | think entanglement is what makes QI really interesting.

—nsembleness is an interesting constraint on QIP. It can be
formulated as a SSR with a finite group, which has not been as studied
as SSRs based on Lie groups.

The concept of a to break a SSR based on a finite group is not
SO obvious, so is worth exploring.

Entanglement constrained by this SSR can illustrate analogies with
concepts in mixed-state entanglement such as

Finally, there is the question as to whether it is necessary to go
beyond SSHs to properly capture ensembleness as in NMR QIP.
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Outline

. What is entanglement?

. What is a super-selection rule?

. What is entanglement constrained by a SSR?
. What is the SSR for ensembleness?

. How much constrained entanglement is there in ensemble QIP?

. What is a for this SSR? (and issues arising)

-

. Beyond the SSR: Reuvisiting the question: How much constrained
entanglement is there in ensemble QIP?
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1. What is entanglement?

Even considering only bipartite entanglement, there are still many
concepts of entanglement. One (the strongest?) is

It is a property of a system shared by two (potentially) distant
parties such that their expected measurement correlations are
inexplicable without (potentially) faster-than-light signalling.

If entanglement in this sense is present, it will probably also be useful,
e.g. for dense coding, teleportation, scheduling.

Why such a strong (operational, not mathematical) concept?
To avoid fluffy bunny entanglement (Burnett). If entanglement is a
mathematical property, then entanglement can be found anywhere
just by decomposing Hilbert space in the right way.
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2. What is a SSR?

A SSRH is a restriction (fundamental or practical) on the allowed
operations O on a system, not on its allowed states.

Note that “operations” includes unitaries, where Op = UpUT, and
also measurements, where for example O.p = M,pM; and ¥, MM, =1.

We define a SSR to be associated with a group G of local physical
transformations g represented by unitary operators T'(g).

The G-SSR is the rule that the operations must be G-covariant.
That is, they must satisfy

vpand vg < G, O[T (g)pT(g)] = T(g)[0p]T*(g).
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Relations to traditional SSRs and Conservation Laws

Traditionally (W3, 1952), one talks of a SSR for an operator (say
0;), rather than a SSR associated with a group of transformations.

Such a SSR can be derived from a conservation law for Q iff:
1. The state of the universe commutes with global charge O.
2. Qs of the form Q = Y+_, Ox, where Q; acts on subsystem F.

The resulting SSRs for local charge O; means roughly that it is
forbidden to create a superposition of states with different Q,-values.

“SSR for O, or “0,-SSR” is compatible with our above definition if
it is read as “SSR associated with the Lie group G generated by Q.

However, we are also interested in non-Abelian Lie groups such as
SU(2), and with finite groups such as Sy.
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SSRs and Mixing
If a SSR associated with G is in force, then no outcomes will be
changed if a state p is replaced by the state T(g)pT7(g) for any g € G.

The most mixed state (that is, the state containing no irrelevant
information) with which p is physically equivalent is

] (dim G)'S,.T(g)pT7(g), finite groups
{:-; l"j E . F -: - " e . - e
_II__._dffHaarlE ) T(g)pT'(g). Lie groups

We call this the G-invariant state, as Vg € G, T(g)[Gp]T"(g) = Gp.
For traditional SSRs, i.e. groups with a single generator O = zqgﬁq,
Gp =2 MypIl,
q
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3. What is Entanglement Constrained by a SSR?

We (Wiseman and Vaccaro, 2003; Bartlett and Wiseman, 2003)
proposed an operational definition:

SVS R . ¢ SYS regy Ty
Ecssr(pag) = max Ep(Treys [O(ParRPag)]) -

SyS

e Here we have allowed for a mixed system state p’,
e The initial register state factorizes: p,z = |04) (04| © |05)(83|.
e The operations O are G-covariant local operations.

e Ep for mixed states is the distillable entanglement.

Theorem: The SSR can be enforced by removing all irrelevant
information from p by the decoherence process p — Gp. That s,

Ec ssr(par) = Ep(Gpas) -
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3. What is Entanglement Constrained by a SSR?

We (Wiseman and Vaccaro, 2003; Bartlett and Wiseman, 2003)
proposed an operational definition:

SYS L s ¢ SYS regy 1y
Ec ssr(pag) = max Ep(Trsys |O(Pag@Pag)])-

SyS

e Here we have allowed for a mixed system state p;,
e The initial register state factorizes: p,z = |04) (04| © |05)(03|.
e The operations O are G-covariant local operations.

e Ep for mixed states is the distillable entanglement.

Theorem: The SSR can be enforced by removing all irrelevant
information from p by the decoherence process p — Gp. That is,

Ec ssr(pas) = Ep(Gpas) -
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Proof of Theorem

Denote arbitrary operations by ‘£, and G-covariant operations by O.

E.:’_'___Ef =1 |‘1:£ )= IIIS_K ED {Trsj-,fs [U {pﬁ & pﬁ)]) .

By G-covariance of O and properties of trace

SYS

—max Ep(Tres[(G0 00 G) (0252 pZH))).

By G-covariance of Go‘Eo G

SYS

— IH;EE Ep {Trs‘ys [{ GokEo ';5-':) (pAB & pE}D

By properties of trace

~ .Sys reg

:IIIEE Ep {Trsys[i:{[';?p ]}{ pABJ]}

. SYSy
= EC. | [-FP;LB |
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4. What is the SSR for ensembleness?

Ensemble QIP (quantum information processing) means:

e N (typically > 1) identical copies of a “'molecule” of M qubits.

e all operations are symmeilric (i.e. affect each molecule identically).

e.g. NMR: each molecule contains M atoms having a spin-% nucleus.
For M = 4 the qubits could be the spin-3 nuclei of H, 'O, °C, “F.
In NMR, the operations use rf magnetic pulses and an antenna.

In NMR QIP it is also the case that the molecules can only be
prepared in highly mixed states, and the detection efficiency is very
small. However, we regard these limitations as inessential to the
ensembleness and do not consider them.
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The Symmetric Group SSR

The restriction on operations O can be formulated as the SSR

O[T (p)pT ()] =T (p)[OpIT" (p)

Here p is a permutation of the N molecules and T (p) is the unitary
operator that implements that permutation.

Thus there are M systems (e.g. for M =4, the N H atoms, the N 10O
atoms, the N °C atoms, the N '°F), each of which is acted on T'(p).

The N! permutations p form the Symmetric group Sy.

We define the Sy-invariant (randomly permuted) state

=% T(palip)
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A Simple Example

Say M =3 (nuclei A, A" and B, per molecule) and N = 2 (there are
two molecules, 1 and 2), and the state is [y) = |131L15) 1313 13)-

We consider that the As and A’s belong to Alice and the Bs to Bob,
and the 5,-SSR applies independently to Alice and to Bob. Now if
Alice’s local operations (acting only on As and A’s) cannot distinguish
molecules 1 and 2, then this state is equivalent to

~ N 1 &1 : L i
1A | — 2)|w) = LAL A’ | B/ |]|:|Eo,

Under the action of ?, (or %), |¥) goes to an equal mixture:
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A Simple Example

Say M =3 (nuclei A, A" and B, per molecule) and N = 2 (there are
two molecules, 1 and 2), and the state is [y) = |141L15) 1313 13)-

We consider that the As and A’s belong to Alice and the Bs to Bob,
and the 5,-SSR applies independently to Alice and to Bob. Now if
Alice’s local operations (acting only on As and A’s) cannot distinguish
molecules 1 and 2, then this state is equivalent to

| b
1 | 4 1 |_| |
— |+A+AT | B AlAB/ -

Under the action of ?, (or %), |¥) goes to an equal mixture:
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The Symmetric Group SSR

The restriction on operations O can be formulated as the SSR

O[T (p)pT ()] =T (p)[OpIT" (p)

Here p is a permutation of the N molecules and T (p) is the unitary

operator that implements that permutation.

Thus there are M systems (e.g. for M =4, the N H atoms, the N 1O
atoms, the N °C atoms, the N '°F), each of which is acted on T'(p).

The N! permutations p form the Symmetric group Sy.

We define the Sy-invariant (randomly permuted) state

— Y T(p)pT'(p)
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A Simple Example

Say M =3 (nuclei A, A" and B, per molecule) and N = 2 (there are
two molecules, 1 and 2), and the state is [y) = |141L15) 1315 13)-

We consider that the As and A’s belong to Alice and the Bs to Bob,
and the 5,-SSR applies independently to Alice and to Bob. Now if
Alice’s local operations (acting only on As and A’s) cannot distinguish
molecules 1 and 2, then this state is equivalent to

I\ (4242 (2

Ja e Talals)-

Under the action of 2, (or %), |v) goes to an equal mixture:
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More General Action of P

Consider the case of N =2J spin-% particles (i.e. just one party and
M = 1). Then the total Hilbert space can be decomposed as

N/2

N -
j=0

e Dim(H;z) =2+ 1 (where j is the "total angular momentum”), and
joint operations such as rotations act only upon H z.

o Dim(Hp) =d; = (y5_;) 5%+ and permutations of the spins 7'(p)
act only upon Hp.

This gives the following basis for H;": {|j.m} ®|j,p):l gl Y }

P il = b
The action of P is to mix over the states |j. p).

H. M. Wizseman, Perimeter Institute, July 2004




Action of # on an Entangled State

This was actually done first by Eisert et al. (PRL, 2000). Each
molecule consists of two nuclei, and all are prepared identically:

) = ﬂi|lalﬁ +B[1aT8))*"
g,

Y. Y, > o B jm)al j.p)a @ |j.m)8lj. D).
J=0m=—j p=1

In this case E(|y)) = N(—o’logo” — B*logB?). But under Sy-SSR,

PrRE,
y) “ BU U V& Z o "B j,m) 4l j, pa)a @ | j.m)s|j. pB)s:

J=0 pa.Pp=1

where ;= Z;;; __D,:l(f—mj leiiﬂ—m]f.dj.
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5. How much constrained entanglement is there in
ensemble QIP?

7
Es,-ssr(|W)) = Ep (P4 @ Pe[|lw) (W]]) = D d70;E(|0;)),

=0

where |0;) = Z:;=_; ol MBI j m)a @ | j,m)p [Eisert et al., 2000].

Consider the particular case of Bell states, where o= = }r Then
E(|w)) = N. but, as shown by Bartlett and Wiseman (2003),

T
|
wt

2j+ 1) 2F\ 2j+1 - |
— (J—;‘)Jf ,-s++11*’-*.:e_~.<;21+1;' ~;log, N.

Since this is the maximum entanglement, the entanglement per
molecule must always — 0 as N — co.
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6. What is a for this SSR?

In general, a for a SSR is something that ameliorates (at least
in part) its effect.

Because Sy is a finite group, a perfect RF can be finite. The
simplest example is just a way to label each molecule, such as by
an extra nucleus (or group of nuclei) with many levels. For example,
with N = 3, a state with reference frame Is

V) = |"lfl- l|"lf1 2:*|l|f3 )= |wl_wj_q}3:} &

Here |w*) is the state of the M nuclei in the kth molecule (not including
the RF) which we have assumed to factorize.
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6. What is a for this SSR?

In general, a for a SSR is something that ameliorates (at least
in part) its effect.

Because Sy is a finite group, a perfect RF can be finite. The
simplest example is just a way to label each molecule, such as by
an extra nucleus (or group of nuclei) with many levels. For example,
with N = 3, a state with reference frame Is

V) = |‘lfl- l|"lf1 2:*|l|f3 )= |\|Il_lljj_'qj3:} &

Here |w*) is the state of the M nuclei in the kth molecule (not including
the RF) which we have assumed to factorize.
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The Hilbert space dimension of the RF just introduced is N¥.

cf. the dimension of Sy which is N! ~ (N /e)" (Stirling).

This suggests that it might be possible to use a smaller RF if we allow
for entanglement between the different molecules.

It turns out that this is indeed the case [Korff and Kempe, quant-
ph/0405086]. In the limit N — <, a RF of size @V with d = | Nr| works

perfectly forany r > 1/e.

Also, for N = 3 they give an example of a 2*-dimension RF which works
with probability 5/6 (compared to 1/2 classically).
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The Hilbert space dimension of the RF just introduced is N¥.

cf. the dimension of Sy which is N! ~ (N /e)" (Stirling).

This suggests that it might be possible to use a smaller RF if we allow
for entanglement between the different molecules.

It turns out that this is indeed the case [Korff and Kempe, quant-
ph/0405086]. In the limit N — <, a RF of size @V with d = | Nr| works
perfectly forany r > 1/e.

Also, for N = 3 they give an example of a 2°-dimension RF which works
with probability 5/6 (compared to 1/2 classically).
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The Hilbert space dimension of the RF just introduced is N¥.

cf. the dimension of Sy which is N! =~ (N /e)" (Stirling).

This suggests that it might be possible to use a smaller RF if we allow
for entanglement between the different molecules.

It turns out that this is indeed the case [Korff and Kempe, quant-
ph/0405086]. In the limit N — <, a RF of size @V with d = | Nr| works

perfectly forany r > 1/e.

Also, for N = 3 they give an example of a 2°-dimension RF which works
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The Hilbert space dimension of the RF just introduced is N¥.

cf. the dimension of Sy which is N! =~ (N /e)" (Stirling).

This suggests that it might be possible to use a smaller RF if we allow
for entanglement between the different molecules.

It turns out that this is indeed the case [Korff and Kempe, quant-
ph/0405086]. In the limit N — <, a RF of size @V with d = | Nr| works

perfectly forany r > 1/e.
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The Hilbert space dimension of the RF just introduced is N¥.

cf. the dimension of Sy which is N! ~ (N /e)" (Stirling).

This suggests that it might be possible to use a smaller RF if we allow
for entanglement between the different molecules.

It turns out that this is indeed the case [Korff and Kempe, quant-
ph/0405086]. In the limit N — <, a RF of size @V with d = | Nr| works

perfectly forany r > 1/e.

Also, for N = 3 they give an example of a 2°-dimension RF which works
with probability 5/6 (compared to 1/2 classically).
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The Hilbert space dimension of the RF just introduced is NV.

cf. the dimension of Sy which is N! =~ (N /e)" (Stirling).

This suggests that it might be possible to use a smaller RF if we allow
for entanglement between the different molecules.

It turns out that this is indeed the case [Korff and Kempe, quant-
ph/0405086]. In the limit N — <, a RF of size @V with d = | Nr| works

perfectly forany r > 1/e.

Also, for N = 3 they give an example of a 2°-dimension RF which works
with probability 5/6 (compared to 1/2 classically).
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The simplest is for Alice and Bob each to have a RF:!

V) = |wliz 14,18) Wiz 24.28) | Wag: 34, 38)

1 2 T X
Wap: Vap:- Vag) ©

Although these states are separable, they cannot be prepared
locally by P, & Pg-covariant operations from a 2, @ Pg-invariant state.

Therefore, In the presence of the Sy-SSR are a form
, that can lift the Sy restriction of entanglement. [cf.
Verstraete and Cirac (2003) for U(1)]

INote that such states are not globally P-invariant. However, using the final RF basis abave we
can write a P-invariant RF: , where "+ means "+ mod 3.
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Entanglement Analogies: Activation

These non-(locally preparable) but separable states are analogous
to nonseparable PPT states in the theory of mixed-state entanglement.

They can activate the entanglement of nonseparable pure states
with Es,_ssp =0, which are analogous to non-1-distillable NPPT states.

An example of such a state is the following. With N =2 and M = 2,
with Alice and Bob owning one nucleus per molecule,

\ E'--." — |T /A —.E—|—|—._-11|—|—.E

Here |[+)=|j=1.m=0)and|-)=|j=0,m=0),s0T(1 < 2)|+) = +|+),
and

P “f | o ]
- A0 |

2y — _—i—._1-|—_gLTJ|—__Jl|—|—.g.
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One copy of a state acts as a quantum RF for another copy

Alice

.
Molecule 1 e @---

Molecule 2 @---
— 3
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Entanglement Analogies: Activation

These non-(locally preparable) but separable states are analogous
to nonseparable PPT states in the theory of mixed-state entanglement.

They can activate the entanglement of nonseparable pure states
with Es,_ssp =0, which are analogous to non-1-distillable NPPT states.

An example of such a state is the following. With N =2 and M = 2,
with Alice and Bob owning one nucleus per molecule,

V2IW) = [+ )4 _-b+|_-.'11|+'5

Here |[+)=|j=1.m=0)and|-)=|j=0,m=0),s0T(1 < 2)|+) = |+,
and
—igp |—_-_Jl|—|—.5r.
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One copy of a state acts as a quantum RF for another copy

Alice Bob

p
Molecule 1 e @---

Molecule 2 @- —
— [
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Entanglement Analogies: Activation

These non-(locally preparable) but separable states are analogous
to nonseparable PPT states in the theory of mixed-state entanglement.

They can activate the entanglement of nonseparable pure states
with Es,_ssp =0, which are analogous to non-1-distillable NPPT states.

An example of such a state is the following. With N =2 and M = 2,
with Alice and Bob owning one nucleus per molecule,

=

V2IW) = |+)al— )+ |—)al+)B

Here |[+)=|j=1.m=0)and|-)=|j=0,m=0),s0T(1 < 2)|+) = +|+),
and
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Entanglement Analogies: 1-D = 2-D

Although V2|y) = |+)4]—)z+ |— s has Es ssg =0, with two

LA

copies some entanglement can be ebtemeel

Note that two copies does not mean four molecules. Since S5 is
fixed, we still have N = 2 molecules. But instead of M =2, how M = 4,
with Alice and Bob each having two nuclei:

= [-Hal——)aH )b a+ ) al—Ha+ | )al-Hs

i

The constrained entanglement of this state is 1 ebit:

++H)al—=)p+ |——)a|l++)g W |—+)a|+—=)a+ |[+—ta|—+)B

This is analogous to the existence of distillable NPPT states that are
not 1-distillable. That is, hon-1-D NPPT states can act as RFs too.

H. M. Wiseman, Perimeter Institute, July 2004




One copy of a state acts as a quantum RF for another copy

Alice Bob

-
Molecule 1 — @---

Molecule 2 @---
— [
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7. Beyond the Sy-SSR

The Sy-SSR says that all elements (molecules) are subject to
identical operations. But is this enough to characterize NMR QIP?

Totally symmetric operations also characterize spin-squeezing
experiments, but in these experiments, collective operations on the
elements (atoms) are also possible. For example, collective QND
measurement of the atomic spins entangles the atoms.

| suggest NMR QIP is more constrained in that operations must

be non-collective as well as symmetric. Considering the M =1 for
simplicity, then all that can be done in practice is

e Rotations exp(—i8-J) = exp(—i0-3¥ ,6/2).

e Destructive measurement of J, = 3%, 65/2.
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How can we characterize these constraints?

| don't know the definitive answer but
(1) | suspect it is not by any G-SSR
(2) A stronger (but not too strong) constraint can be found:

e If the molecules are randomly permuted locally (i.e. the state is
operated upon by P; & ¥g) then the entanglement obtained cannot
be more than under the Sy-SSR.

e NMR operations could be performed by thus permuting and

then separating the molecules and performing unitaries and
measurements on them independently.

e S0, Py P followed by separate operations is a stronger constraint
than the S,-SSR, but is not too strong for NMR QIP.
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Revisiting the question: How much constrained
entanglement is there in ensemble QIP?

Consider the case (as in NMR QIP) where all molecules are
prepared in the same state, pz.

If they are randomly permuted and then separated, then there are
now N “Alices” and N "Bobs”, and any pair consisting of one Alice and
one Bob shares the state

Y

)aB + - = Irp[pag] @ Tra|pas.
The total entanglement shared between the Alices and the Bobs is
thus bounded above by E,, =N < E¢(plz), and this is also an upper
bound on the “true” entanglement constrained by ensembleness.
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Progress so far

Say M =2 and each molecule is prepared as o||4]z) + B|Talz)- Then

: N S
(Y _J__h:;s.—iﬂ |__1|5|_|

[a]) @ (0] 1) (L8| + B 1) (18]).

We (Jones and Wiseman) do not have an analytical expression for
E,, = N x Eg(plp) but we do know the following:

e Fora=B=-L1,E =1, E,=0235---,and for N > 2, E;, =0.

o

v

e For N > 1 it seems the maximum E}, = O(log(N)/N°) for o.= O(1/N)
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CONCLUSIONS

—ntanglement and Ensembleness highlights some interesting issues:

e How should constrained entanglement be defined?

e What is a . and is there a difference between

gquantum and classical RFs?

e Can constrained entanglement and be related to unconstrained

. :
ntanalement for mixed ;'-::1::-5"?
L o - - LY - 1 e el et Sy T '

-

Is it necessary to go beyond SSRs to capture interesting

constraints?

-
—
-
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Future Work

e Obtain analytical results for Ej,, at least asymptotically.

e GO “beyond beyond”, by considering what one can really do in
ensemble QIP to use (or at least demonstrate) entanglement.

e Think about whether this simple non-SSR constraint is at all useful
in thinking about other non-SSR constraints such as LOCC.

e Link in with other work with John Vaccaro, Steve Bartlett and Rob
Spekkens, .7
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