Title: Quantizing and Dequantizing Reference Frames

Date: Jul 12, 2004 03:00 PM

URL: http://pirsa.org/04070002

Abstract: Quantum Information Workshop

Pirsa: 04070002 Page 1/44

Outline

The coherence as fact vs. coherence as fiction controversy

A resolution: Classical reference frames and quantum reference frames as alternative paradigms of description

The lessons I wish to draw from this:

- Quantum states describe relations
- Many, if not all, superselection rules can be circumvented in principle

Pirsa: 04070002 Page 2/44

Coherence: Fact or fiction?

There are many contexts in which the debate arises:

Superconductors – for superpositions of charge eigenstates BECs – for superpositions of atom number eigenstates Lasers – for superpositions of photon number eigenstates

We discuss the optical case, although the discussion would be similar for the others.

Pirsa: 04070002 Page 3/44

Optical coherence: a convenient myth?

K. Molmer, Phys. Rev. A. 55, 3195 (1997)

Standard assumption:

$$|\alpha\rangle = \sum_{n=0}^{\infty} \frac{e^{-|\alpha|^2/2}\alpha^n}{\sqrt{n!}} |n\rangle$$

Pirsa: 04070002 Page 4/44

Optical coherence: a convenient myth?

K. Molmer, Phys. Rev. A. 55, 3195 (1997)

Standard assumption:

$$|\alpha\rangle = \sum_{n=0}^{\infty} \frac{e^{-|\alpha|^2/2} \alpha^n}{\sqrt{n!}} |n\rangle$$

But if we quantize the atoms in the gain medium, and:

- assume the gain medium is in an energy eigenstate,
- apply energy conservation

$$|e\rangle|n\rangle \rightarrow \alpha(t)|e\rangle|n\rangle + \beta(t)|g\rangle|n+1\rangle$$

→ atoms and field evolve to an entangled state

Pirsa: 04070002 Page 5/44

Optical coherence: a convenient myth?

K. Molmer, Phys. Rev. A. 55, 3195 (1997)

Standard assumption:

$$|\alpha\rangle = \sum_{n=0}^{\infty} \frac{e^{-|\alpha|^2/2} \alpha^n}{\sqrt{n!}} |n\rangle$$

But if we quantize the atoms in the gain medium, and:

- assume the gain medium is in an energy eigenstate,
- apply energy conservation

$$|e\rangle|n\rangle \rightarrow \alpha(t)|e\rangle|n\rangle + \beta(t)|g\rangle|n+1\rangle$$

→ atoms and field evolve to an entangled state

$$\rho = \sum_{n=0}^{\infty} p_n |n\rangle \langle n|$$

$$p_n = \frac{e^{-|\alpha|^2 |\alpha|^{2n}}}{n!}$$

The ensuing controversy

- T. Rudolph and B. C. Sanders, Phys. Rev. Lett. 87, 077903 (2001)
- H. M. Wiseman, J. Mod. Opt. 50, 1797 (2003); arXiv:quantph/0104004
- S. J. van Enk and C. A. Fuchs, Phys. Rev. Lett. 88, 027902 (2002)
- S. J. van Enk and C. A. Fuchs, Quantum Information and Computation 2, 151 (2002)
- T. Rudolph and B. C. Sanders, quant-ph/0112020 (2001)
- K. Nemoto and S. L. Braunstein, quant-ph/0207135 (2002)
- H. M. Wiseman, J. Mod. Opt. 50, 1797 (2003)
- B. C. Sanders, S. D. Bartlett, T. Rudolph, P. L. Knight, Phys. Rev. A 68, 042329 (2003)
- J. Smolin, quant-ph/0407009

• ...

Pirsa: 04070002 Page 7/44

The reduced density operator should be interpreted as a mixture of coherent states

$$\rho = \sum_{n=0}^{\infty} p_n |n\rangle \langle n| = \int_0^{2\pi} \frac{d\phi}{2\pi} |\alpha\rangle \langle \alpha|$$

C: The reduced density operator should be interpreted as a mixture of coherent states

$$\rho = \sum_{n=0}^{\infty} p_n |n\rangle \langle n| = \int_0^{2\pi} \frac{d\phi}{2\pi} |\alpha\rangle \langle \alpha|$$

NC: This is to commit the notorious preferred ensemble fallacy

C: The reduced density operator should be interpreted as a mixture of coherent states

$$\rho = \sum_{n=0}^{\infty} p_n |n\rangle \langle n| = \int_0^{2\pi} \frac{d\phi}{2\pi} |\alpha\rangle \langle \alpha|$$

NC: This is to commit the notorious preferred ensemble fallacy

You assumed that the source had no coherence, but this is false

C: The reduced density operator should be interpreted as a mixture of coherent states

$$\rho = \sum_{n=0}^{\infty} p_n |n\rangle\langle n| = \int_0^{2\pi} \frac{d\phi}{2\pi} |\alpha\rangle\langle \alpha|$$

- NC: This is to commit the notorious preferred ensemble fallacy
- C: You assumed that the source had no coherence, but this is false
- NC: Even if the source had a phase, we don't *know* it, therefore it is described by a mixture over all phases.

 Assuming that one of these is actual is to commit the PEF

C: The reduced density operator should be interpreted as a mixture of coherent states

$$\rho = \sum_{n=0}^{\infty} p_n |n\rangle \langle n| = \int_0^{2\pi} \frac{d\phi}{2\pi} |\alpha\rangle \langle \alpha|$$

- NC: This is to commit the notorious preferred ensemble fallacy
- C: You assumed that the source had no coherence, but this is false
- NC: Even if the source had a phase, we don't *know* it, therefore it is described by a mixture over all phases.

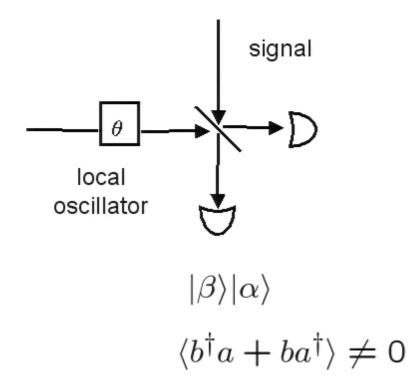
 Assuming that one of these is actual is to commit the PEF
- C: This is a proper mixture, the PEF only applies to improper mixtures

C: Experiments have shown that lasers have a well-defined phase

Pirsa: 04070002 Page 13/44

C: Experiments have shown that lasers have a well-defined phase

Example: Homodyne detection

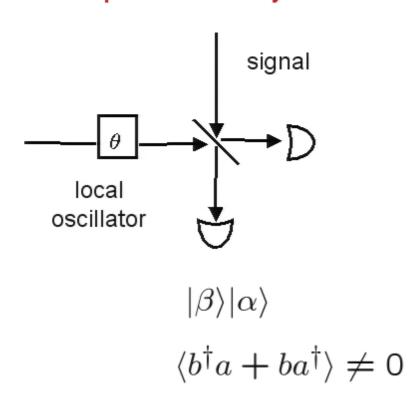


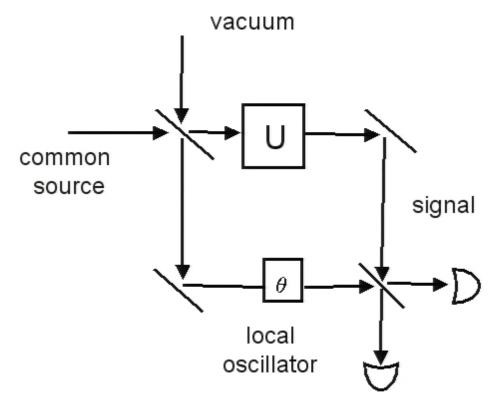
Pirsa: 04070002 Page 14/44

C: Experiments have shown that lasers have a well-defined phase

NC: No they haven't

Example: Homodyne detection



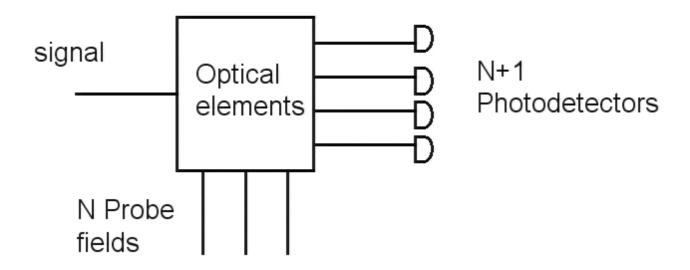


Demonstrates coherence between states of different relative number

Can any standard optical experiment detect coherence?

Can any standard optical experiment detect coherence?

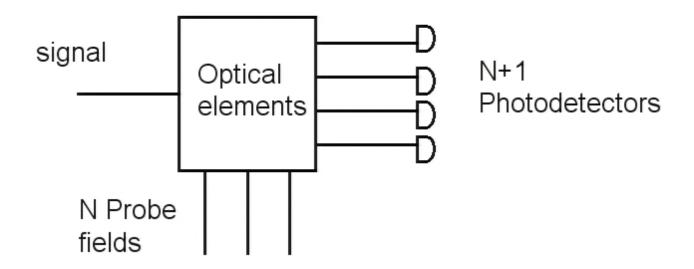
No.



Pirsa: 04070002 Page 17/44

Can any standard optical experiment detect coherence?

No.



This cannot distinguish
$$\rho = \sum_{n,m} p_{nm} |n\rangle\langle m|$$
 from $\rho = \sum_{n} p_{nn} |n\rangle\langle n|$

The coherence has no operational significance!

But one can generate and detect coherence given a classical clock

Pirsa: 04070002 Page 19/44

But one can generate and detect coherence given a classical clock

Generating coherence relative to a classical clock

Ex: classical oscillating current

$$U(t,0) = \exp(\alpha(t)a^{\dagger} - \alpha(t)^*a)$$

 $U(t,0)|vac\rangle = |\alpha(t)\rangle$

Pirsa: 04070002 Page 20/44

But one can generate and detect coherence given a classical clock

Generating coherence relative to a classical clock

Ex: classical oscillating current

$$U(t,0) = \exp(\alpha(t)a^{\dagger} - \alpha(t)^*a)$$

 $U(t,0)|vac\rangle = |\alpha(t)\rangle$

Detecting coherence relative to a classical clock

Ex: In homodyne detection, if the local oscillator is treated classically, then the interference term is

$$\langle \beta^* a + \beta a^{\dagger} \rangle$$

Pirsa: 04070002 Page 21/44

So, both descriptions are empirically adequate!

The debate usually presumes that the quantum state of a system describes its intrinsic properties and consequently that there is a matter of fact about whether or not there is coherence.

Pirsa: 04070002 Page 22/44

So, both descriptions are empirically adequate!

The debate usually presumes that the quantum state of a system describes its intrinsic properties and consequently that there is a matter of fact about whether or not there is coherence.

Our suggestion: there are really only relations between systems and the quantum state describes these. In this case, the two descriptions can be consistent.

Pirsa: 04070002 Page 23/44

Relational view of quantum states

The quantum state describes the relation between the system and the reference frame

Coherence paradigm = classical RF paradigm

No coherence paradigm = quantum RF paradigm

See: Aharonov and Susskind, Phys. Rev. 155, 1428 (1967).

Non-eigenstate of	Classical RF	Group
linear momentum	spatial frame (e.g. GPS satellites)	HW
angular momentum	orientation frame (e.g. gyroscopes)	SU(2)
photon number	clock	U(1)
atom number	BEC phase	U(1)
charge	Superconducting phase	U(1)

Pirsa: 04070002 Ve shall consider a general framework that works for all these cases

G = group of transformations for the relevant d.o.f.

No classical RF for G

Operations and observables must be invariant under collective action of G (Superselection rule)

Pirsa: 04070002 Page 25/44

G = group of transformations for the relevant d.o.f.

No classical RF for G

Operations and observables must be invariant under collective action of G (Superselection rule)

Page 26/44

Suppose T:G \rightarrow GL(H) is a collective representation of G A G-invariant CP map $\mathcal O$ satisfies

$$\mathcal{O}[T(g)\rho T^{\dagger}(g)] = T(g)\mathcal{O}[\rho]T^{\dagger}(g) \quad \forall g \in G$$

A G-invariant POVM $\{E_k\}$ satisfies

$$T(g)E_kT^{\dagger}(g) = E_k \quad \forall \ g \in G$$

Equivalence classes of states:

$$\rho \equiv \rho' \qquad \text{if} \qquad \frac{\text{Tr}[A\rho] = \text{Tr}[A\rho']}{\text{for all G-invariant A}}$$
 or
$$\mathcal{G}(\rho) = \mathcal{G}(\rho')$$
 where

$$\mathcal{G}[\rho] \equiv \begin{cases} \frac{1}{|G|} \sum_{g \in G} T(g) \rho T^{\dagger}(g) \,, & \text{finite groups} \\ \int_{G} \mathrm{d}v(g) \, T(g) \rho T^{\dagger}(g) \,, & \text{Lie groups} \end{cases}$$

Convention: represent each equivalence class by the G-invariant state

$$\rho = \mathcal{G}(\rho)$$

Quantizing RFs

Suppose the system state w.r.t the classical RF is: $|\psi\rangle \in H_s$

Quantize all physical objects that can serve as a RF. Introduce a Hilbert space H_R

Naïve approach: assign $|\chi\rangle\otimes|\psi\rangle\in H_R\otimes H_S$ E.g. For optical case, one could take $|\chi\rangle$ to be a coherent state $|\alpha\rangle$

Better approach: Assign ρ on $H_R \otimes H_S$

$$\rho = \frac{1}{2\pi} \int_0^{2\pi} d\phi \, |\phi\rangle \, \langle\phi| \otimes T(\phi) |\psi\rangle \langle\psi| T^{\dagger}(\phi)$$

Problem with naïve approach to quantization: There is no observational difference among states

$$U(g)|\chi\rangle\otimes U(g)|\psi\rangle$$

for different $g \in G$

There is no real difference associated with this distinction The only real degree of freedom is in the relative orientation

Pirsa: 04070002 Page 29/44

Problem with naïve approach to quantization: There is no observational difference among states

$$U(g)|\chi\rangle\otimes U(g)|\psi\rangle$$

for different $g \in G$

There is no real difference associated with this distinction The only real degree of freedom is in the relative orientation

We must find a set of <u>G-invariant</u> states in $H_R \otimes H_S$ that encode the possible relations Can these simulate the states in H_S ? Yes.

See: Kitaev, Mayers, Preskill, quant-ph/0310088

Pirsa: 04070002 Page 30/44

Classical RF paradigm

Measurements

$$\{E_k\}$$

defined on \mathcal{H}_S

Transformations

Quantum RF paradigm

States

$$\tilde{\rho}$$

Measurements

Transformations

$$\tilde{\mathcal{O}}$$

defined on $\mathcal{H}_R \otimes \mathcal{H}_S$

and G-invariant

Find a mapping

$$\rho \to \rho$$
 $E_k \to \tilde{E}_k$

$$\operatorname{Tr}_S[\mathcal{O}(\rho)E_k] = \operatorname{Tr}_{RS}[\tilde{\mathcal{O}}(\tilde{\rho})\tilde{E}_k]$$

Define
$$\tilde{\rho} = \$(\rho)$$

$$\tilde{E}_k = \$(E_k)$$

$$\tilde{A}_\mu = \$(A_\mu)$$

where

$$\$: A \mapsto \int_G d\nu(g) |g\rangle \langle g| \otimes T(g) A T^{\dagger}(g)$$

with
$$T(g')|g\rangle = |g'\circ g\rangle$$
, for all $g,g'\in G$ and $\langle g|g'\rangle = \delta(g,g')$

Property 1: \$(A) is G-invariant

Proof: $(T(g') \otimes T(g'))$ \$ $(A)(T^{\dagger}(g') \otimes T^{\dagger}(g'))$

$$= \int_{G} d\mu(g) T(g') |g\rangle \langle g| T^{\dagger}(g') \otimes T(g') T(g) A T^{\dagger}(g) T^{\dagger}(g')$$

$$= \int_{G} d\mu(g) \left| g' \circ g \right\rangle \left\langle g' \circ g \right| \otimes T(g' \circ g) A T^{\dagger}(g' \circ g)$$

$$=$$
 \$(A).

(A) is G-invariant

Proof:
$$(T(g') \otimes T(g'))$$
\$ $(A)(T^{\dagger}(g') \otimes T^{\dagger}(g'))$

$$= \int_{G} d\mu(g) T(g') |g\rangle \langle g| T^{\dagger}(g') \otimes T(g') T(g) A T^{\dagger}(g) T^{\dagger}(g')$$

$$= \int_{G} d\mu(g) \left| g' \circ g \right\rangle \left\langle g' \circ g \right| \otimes T(g' \circ g) A T^{\dagger}(g' \circ g)$$

$$= \$(A).$$

Property 2:

$$\$(A + B) = \$(A) + \$(B)$$
 and

$$\$(AB) = \$(A)\$(B)$$

Proof:
$$\int_G d\nu(g) |g\rangle \langle g| \otimes T(g) A T^{\dagger}(g) \int_G d\nu(g') |g'\rangle \langle g'| \otimes T(g') B T^{\dagger}(g')$$

$$= \int_G d\mu(g) |g\rangle \langle g| \otimes T(g) A T^{\dagger}(g) T(g) B T^{\dagger}(g)$$

$$= \int_G d\mu(g) |g\rangle \langle g| \otimes T(g) A B T^{\dagger}(g)$$

$$\operatorname{Tr}_{RS}(\$(A)) = \operatorname{Tr}_{S}(A)$$

Property 4:

if
$$A > 0$$
 then $\$(A) > 0$

$$(I_S) = I_{RS}$$

Property 3:

$$\operatorname{Tr}_{RS}(\$(A)) = \operatorname{Tr}_{S}(A)$$

Property 4:

if
$$A > 0$$
 then $\$(A) > 0$

Property 5:

$$(I_S) = I_{RS}$$

 $3,4 o if \
ho$ is a density operator, so is $ilde{
ho}$ $2,4,5 o if \ \{E_k\}$ is a POVM, so is $\{ ilde{E}_k\}$ $2,5 o if \ \mathcal{O}$ is a CP map, so is $ilde{\mathcal{O}}$

Property 3:
$$\operatorname{Tr}_{RS}(\$(A)) = \operatorname{Tr}_{S}(A)$$

Property 4: if
$$A > 0$$
 then $\$(A) > 0$

Property 5:
$$\$(I_S) = I_{RS}$$

$$3,4 o if \
ho$$
 is a density operator, so is $ilde{
ho}$ $2,4,5 o if \ \{E_k\}$ is a POVM, so is $\{ ilde{E}_k\}$ $2,5 o if \ \mathcal{O}$ is a CP map, so is $ilde{\mathcal{O}}$

$$\operatorname{Tr}_{RS}[\tilde{\mathcal{O}}(\tilde{\rho})\tilde{E}_{k}] = \operatorname{Tr}_{RS}[\sum_{k} \$(A_{\mu})\$(\rho)\$(A_{\mu}^{\dagger})\$(E_{k})]$$
$$= \operatorname{Tr}_{RS}[\$(\sum_{k} A_{\mu}\rho A_{\mu}^{\dagger} E_{k})]$$
$$= \operatorname{Tr}_{S}[\mathcal{O}(\rho)E_{k}]$$

Example: Superpositions of charge eigenstates

Consider a coherent superposition of charge eigenstates on H_s $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$

This is simulated by the U(1)-invariant state

$$\rho = \frac{1}{2\pi} \int_0^{2\theta} d\theta \, |\theta\rangle \, \langle\theta| \otimes T(\theta) |\psi\rangle \langle\psi| T^{\dagger}(\theta)$$
$$|\theta\rangle = \frac{1}{\sqrt{2\pi}} \sum_{q=-\infty}^{\infty} e^{-iq\theta} |q\rangle$$
$$T(\theta) = e^{-i\theta\hat{Q}}$$

which may be written as

$$\rho = \sum_{q=-\infty}^{\infty} |\psi_q\rangle \langle \psi_q|$$

where
$$|\psi_q\rangle = \alpha |q+1\rangle |0\rangle + \beta |q\rangle |1\rangle$$

The relational Hilbert space

G-invariant operators have the form

$$\mathcal{G}(A) = \int_G d\nu(g) T(g) A T^{\dagger}(g).$$

Pirsa: 04070002 Page 39/44

The relational Hilbert space

G-invariant operators have the form

$$\mathcal{G}(A) = \int_G d\nu(g) T(g) A T^{\dagger}(g).$$

Writing

$$\mathcal{H} = \bigoplus_{j} \mathcal{H}_{j}^{\mathsf{glob}} \otimes \mathcal{H}_{j}^{\mathsf{rel}}$$

Carrier space of ith irrep of G

Hilbert space for the multiplicity of the jth irrep of G

The relational Hilbert space

G-invariant operators have the form

$$\mathcal{G}(A) = \int_G d\nu(g) T(g) A T^{\dagger}(g).$$

Writing

$$\mathcal{H} = \bigoplus_{j} \mathcal{H}_{j}^{\mathsf{glob}} \otimes \mathcal{H}_{j}^{\mathsf{rel}}$$

Carrier space of jth irrep of G

Hilbert space for the multiplicity of the jth irrep of G

We have, by Schur's lemma,

$$\mathcal{G}(A) = \sum_{j} \mathcal{D}_{j}^{\mathsf{glob}} \otimes \mathcal{I}_{j}^{\mathsf{rel}}(P_{j}AP_{j}).$$

Pirsa: 04070002 Coherence-full subsystem

Decoherence-free subsystem

Dequantizing RFs

Wrong approach: Trace over reference frame

$$\rho_S = \operatorname{Tr}_{\mathsf{R}}(\rho_{\mathsf{RS}})$$

Right approach: Proj

Project into an irrep and trace over the decoherence-full subsystem

i.e. keep only the decoherence-free

subsystem

$$\rho_S = \mathsf{Tr}_{\mathsf{glob}}(\mathsf{P}_{\mathsf{j}}\rho_{\mathsf{RS}}\mathsf{P}_{\mathsf{j}})$$

Conclusions

- Quantum states describe the relation of a system to a reference frame
- One can break superselection rules given appropriate resources

Pirsa: 04070002 Page 43/44

Future research

- Quantizing and dequantizing finite RFs
- Degradation of finite RFs (see poster by P. Turner)
- Possibility of condensates for novel degrees of freedom
- Connection to relationalism in quantum gravity (work with E. Livine and F. Girelli)

Pirsa: 04070002 Page 44/44