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Abstract: | will give account of awork in progress in which | attempt to modify the metric-manifold structure of GR in the infra-red. The proposed
modification does not contain any massive parameter as it is effective at length scales comparable with the inverse (extrinsic) curvature. The guiding
line for this modification is an & quot;ultra-strong& quot; equivalence principle, according to which even semi-classical gravitational effects (i.e.
particle production) are definitely banned from a sufficiently small free-falling elevator. Some cosmological consequences of this modification will
be discussed.
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Basic Idea: FP. arXiv:0904.4299

Cosmological Implications: FP. to appear

Modifying Gravity in the Infra-Red with an
Ultra-Strong Equivalence Principle

Federico Piazza

PERIMETER INSTITUTE FOR THEORETICAL PHYSICS




Invitation: a very well established paradigm...

o — /\/5_] (R - £rnutter)
Common wisdom:

e \We can trust the above up to the semi-classical/low energy effective level

e The only problem with the above is its UV-completion
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Invitation: a very well established paradigm...

= /\/§ (R + £'mu.tter)

However
There are few UV-insensitive difficulties:

e CC problem
e BH information paradox

e Cosmology (two epochs of accelerating expansion, fine tunings etc...)
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IR modification of a very well established paradigm

= /\/.a (R = 3 ‘Crnutter)
T

Small scales approximation

Recipe:

* No new mass parameter (Take GR itself as an example)
¢ |R scale: the curvature! (the Universe looks accelerating at that scale...)

e Start from semi-classical gravity and modify the matter-field operators in the
IR. Effectively: breakdown of the metric manifold on large scales.

e Any “principle”?
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Qutline

¢ Introduction, the Ultra-Strong equivalence principle, strategy.
* Modifying the Fourier Modes
e A look at the global picture

e Cosmology
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Qutline

¢ Introduction, the Ultra-Strong equivalence principle, strategy.
* Modifying the Fourier Modes
* A look at the global picture

e Cosmology
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Gravity as an Infra-Red Effect

Equivalence principle: if you are
inside a free-falling elevator you
can forget about gravity!
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Gravity as an Infra-Red Effect

Equivalence principle: if you are
inside a free-falling elevator you
can forget about gravity!
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/

General Relativity!

Concrete realization of this idea:
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Gravity as an Infra-Red Effect

7

Equivalence principle: if you are D

inside a free-falling elevator you

can forget about gravity!
No new mass scale introduced:

the IR-breakdown of non-gravitational physics
happens at scales set by the curvature

e.g. Area(d) = 4nd* [1 + O(Rd?)]
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Gravity as an Infra-Red Effect

Things changed after the
development of quantum
theory. The free falling elevator
is no longer immune from
gravitational effects

Pirsa: 04050000
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Gravity as an Infra-Red Effect

Things changed after the
development of quantum
theory. The free falling elevator
is no longer immune from

gravitational effects /

Ultra-Strong Equivalence principle: for each (sufficiently
decoupled) matter sector there exists a state ( the vacuum”)
that is experienced as empty of particles by each free-falling
observer
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What we want to get rid of?

(T3 bare = /d3k (k | f‘”j:(t) | f“;fg(t) | )
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What we want to get rid of?

<T(?>bare — /d3k (k % fquad(t) + flug(t) % )

IS |

Usual procedure:
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What we want to get rid of?

oue = [ “

Usual procedure:

f“”f:ft)+...)

Renormalize the local terms with appropriate gravitational counterterms
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What we want to get rid of?

<T0>bare /d3 ‘
Usual procedure: //

Renormalize the local terms with app

riate gravrtauonal counterterms

The non-local contributions are the effective particle content of the * vacuum’
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The CC problem in semi-classical gravity

<]1(?>bare - fdgk (k} % fquad(t) % flog(t) _+_)

I3 k3
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The CC problem in semi-classical gravity

e~ [ B S0 )

Is it here?




The CC problem in semi-classical gravity

Is it here?

Is it here? (It is because of this terms that we cannot just
normal order like in flat space)
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Dr. Strangelove

How
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Stop
Worrying

And

Love

The

Cosmological Constant
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Ultra-Strong EP: more precisely...

o oy /dSk (k % fq“jcd(t) : fl“ﬁ;,‘(t) +)
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Ultra-Strong EP: more precisely...

T = [ (i B L)

In the full, IR-completed theory these
terms just do not exist
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Ultra-Strong EP: more precisely...

(e = [ o (1 T gl )

In the full, IR-completed theory these
terms just do not exist

e This can arguably be achieved with a IR modification of the standard paradigm

e CC problem under a new light

e The IR term that cancel the quadratic divergence has the right size to give
interesting cosmological implications.
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Regions of Space as Quantum Subsystems

FE P05 ""Glimmers of a pre-geometric perspective”

In Semiclassical Gravity a region :EE'OSC 07
of space has a dual description Cacciatori. Costa. F P '08
Costa,EP, 08
r'Y
R “this room, now”

-~ .

Pirsa: 04050000 Page 24/89



Ultra-Strong EP: more precisely...

(e = [ (1 T Lt )

In the full, IR-completed theory these
terms just do not exist

e This can arguably be achieved with a IR modification of the standard paradigm

e CC problem under a new light

e The IR term that cancel the quadratic divergence has the right size to give
interesting cosmological implications.
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Regions of Space as Quantum Subsystems

FE P05 ""Glimmers of a pre-geometric perspective”

In Semiclassical Gravity a region IF:'E'OSC 07
of space has a dual description Cacciatori. Costa. E P '08
Costa, P, 08
'y
R “this room, now”

- ..
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Regions of Space as Quantum Subsystems

FE P05 Glimmers of a pre-geometric perspective”

In Semiclassical Gravity a region EE ?:im 07
of space has a dual description Cacciatori. Costa. F P '08
Costa, FE P, '08
R “this room, now”

GR: Manifold/submanifold (essentially: subset)
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Regions of Space as Quantum Subsystems

FEP’05 Glimmers of a pre-geometric perspective”

In Semiclassical Gravity a region EE ?:im .
of space has a dual description Cacciatori. Costa. E P '08
Costa, EP, 08
R “this room, now”

GR: Manifold/submanifold (essentially: subset)
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Regions of Space as Quantum Subsystems

FEP’05 Glimmers of a pre-geometric perspective”

In Semiclassical Gravity a region EE ?:im ==
of space has a dual description Cacciatori. Costa. F P '08
Costa, EP, 08
R “this room, now”

GR: Manifold/submanifold (essentially: subset)

Much more general description!
QI-_I':\‘ Quantum subsystem! ‘//' H=Hy @ Hg
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The correspondence Submanifold/Subsystems

It is assigned once and for all by the local operators ¢(x, 1)

R “this room, now”

.
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The correspondence Submanifold/Subsystems

It is assigned once and for all by the local operators ¢(x, 1)

R “this room, now”

.

OV, t) = /V P o T
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The correspondence Submanifold/Subsystems

It is assigned once and for all by the local operators ¢(x, 1)

R “this room, now”
nN \V\

These objects are integrals over a
metric manifold

O(V,t) = A d>z/—g &z, t)
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The correspondence Submanifold/Subsystems

It is assigned once and for all by the local operators ¢(x, 1)

R “this room, now”

These objects are integrals over a
metric manifold

O(V,t) = /» d>z/—g ¢(z, t)

But act on the QFT Hilbert space

Zanardi ‘01 and define the partition H = H\ © Hg
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Remember: the area of a sphere in GR...
A(V) = (36xVD/2 (1 + O(RVZ3))

The Rule of Thumb:

Regions of space are still perfectly defined as quantum
subsystems. However,

R “this room, now”

-~ .
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The correspondence Submanifold/Subsystems

It is assigned once and for all by the local operators @(x, t)

[ R “this room, now”

These objects are integrals over a
metric manifold

O(V,t) = A d>z/—g d(z, t)

But act on the QFT Hilbert space

Zanardi ‘01 and define the partition H = H\" > Hg
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Remember: the area of a sphere in GR...
A(V) = (36aV2/3 (1 + O(RV?3))

The Rule of Thumb:

Regions of space are still perfectly defined as quantum
subsystems. However,

R “this room, now”

.
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The correspondence Submanifold/Subsystems

It is assigned once and for all by the local operators @(x, t)

R “this room, now”

These objects are integrals over a
metric manifold

V. t) = A d>z/—g o(z, t)

But act on the QFT Hilbert space

Zanardi ‘01 and define the partition H = Hy % Hpg
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Qutline

¢ Modifying the Fourier Modes

Pirsa: 04050000 Page 38/89



A massless scalar field in a flat FRW

Preserve local physics
o(t,T~0)+3Ho(t,F~0)—V3(t,T~0)=0

T(?z’H:%( (t)3 &2(t, T =~ 0) + a(t) V(t, "':.,*-'0))

Introduce global operators

| e = 1 - 1 1 % AT ik-F
Bt F=0) = s 3 k(A + v AT | R
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The commutator of the global fields is proportional
to the volume; therefore, (ansatz)

==Y - H?
[AE,AJ[.] = (2w L)’ 0% i (1 — Y + higher order)

To be fixed by the USEP
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A general equation of state

w=—2v+3)/(6vr—3); a(t)ox7/*"; H(1)a(r)=

The mode functions can be choosen as
wr(r) =7 HS ) (k1) v (7) = 7" HY (k)

Calculate (0/77(0) |0) and expand at high momenta

k (2v — 1)2 - (2 —1)*
(01 T5(0) [0) o Zk: (a_) (“ T s 1) (1 ~ T4 (k)2 )
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A general equation of state

w=—2v+3)/(6r—3); a(r)xt?*"; H(r)a(r)=

The mode functions can be choosen as
ou(r) = TV HD (k7),  ¥i(r) = 7" HLY (k)

Calculate (0/77(0) |0) and expand at high momenta

k 2 — 1)2 £ 2 — 1)2
(0] T5(0) |0) x Zk: (5) (4+ (2(kr)2) + O(kT) ‘) (1 —q.-(4(kT)2) )

Sriatt -

: e R' - k! p 4 -
Z (let'k" s W L‘ELI"J:’) [4’1E & ;‘—11 E‘I_

k. k
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Qutline

* A look at the global picture
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The momentum (translation) operator
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The momentum (translation) operator

e Z N A:[i Aﬁ 1 :Fourier (comoving) “manifold” labels

—

14

irsa: 04050000 Page 45/89



The commutator of the global fields is proportional
to the volume; therefore, (ansatz)

A5 i H”
Az, AJ[.] = (2w L)’ )% & (1 —y + higher order)

To be fixed by the USEP
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A general equation of state

w=—2v+3)/(6r—3); a(r)xt¥?*"; H(m)a(r)=

The mode functions can be choosen as

Ui(r) = TV HV (kT), Vp(T) = T H? (k)
"\f —
Calculate (0/77(0) |0) and expand at high momenta /

k 2 — 1)2 2 (2v —1)?
(0|:r§(0) 10) ZE: (E) (4—!— (Q(kr)2 + O(kT1) 1) (1 = 1(k7)?2 )

“ AN

: : - T E E’ - =
] .I- i | TR - / f T

- (LLL’E* {l(r)—:‘ LLL*') [..15- J‘_!. Ef-

k. kt

1
9
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The momentum (translation) operator

P = E n ‘Zi:[i }i,ﬁ- 1. :Fourier (comoving) “manifold” labels

—

mn
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The momentum (translation) operator

P = E ﬁ: AE Aﬁ 1. :Fourier (comoving) “manifold” labels

—

TL

Introduce " “manifold operators”
satisfying usual comm. rel.

= 22
ii,f:vfl-f‘fa
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The momentum (translation) operator

P =Y nita;
n

irsa: 04050000

n : Fourier (comoving) “manifold” labels

Introduce '~ “manifold operators”
satisfying usual comm. rel.
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The momentum (translation) operator

P = E n /Zﬂ; ﬁﬁ n :Fourier (comoving) “manifold” labels
n
- = Introduce ' “manifold operators”
E- Z =1 H=a AT A satisfying usual comm. rel.
. Az = \/ ol
T = 12 n
= § :_: i
n —

k is the physical (comoving) momentum
associated to infinitesimal translations
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(sort of) Modified Dispersion Relations

""Manifold”- Fourier comoving labels.
They are conserved during evolution.
Fourier space is flat in these labels

|
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(sort of) Modified Dispersion Relations

""Manifold”- Fourier comoving labels.
They are conserved during evolution.

Fourier space is flat in these labels

=1




Defining local field operators elsewhere

Exponentiate the momentum operator and make a translation operator

W) —e SV Ligee / d*n k(i) AL A5
1 ' —2 AT l—-Hz‘.‘;z
—_— | -1 til T 'JFI
o(t, ) = Ti(\) (£, 0) T, 1 (N) = (%)3/2/(1 nds e (-Tx)

/

"at comoving distance )\ if one keeps going in the ; direction”
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Defining local field operators elsewhere

Exponentiate the momentum operator and make a translation operator

Ti;(\) = e * 5. P: = / d*n k(i) AL Az
1 - ik
== ; — = ';' ” 2n
(_D(f,/*) =Ti(AN) o(t,0) T, " (N) = — [d no; e ( 2 )

"at comoving distance )\ if one keeps going in the : direction”

Abelian translation group in this case: we have a local map!

_ - 1 , ik \ s ke X
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Local Commutators 7(0) = a®>4(0)

7 — _'.' -li

[7(0), 6(X)] = —i (o X+ - )

We recover the /‘ 22 [1(0), (V)] = —i {1 + Ya2.232 4 o(H2v2/3y?
expected pattern AacH :
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Defining local field operators elsewhere

Exponentiate the momentum operator and make a translation operator

Ti;(\) = e "5, { = /d”n E(ﬁf) .‘41.-1-44.-;'{
]_ - —3 \n I_Hzrltz
= | -1 t;, » L D=
@(t.;) =TV (O TN = 573 /d nés e (-5¥)

"at comoving distance )\ if one keeps going in the : direction”
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Defining local field operators elsewhere

Exponentiate the momentum operator and make a translation operator

Ti(\) = e 5. s — /d:'i'n E(fi) A;Aﬁ
1 : —iAn;(1-H2g>
—_— . -1 til L o
o(t,x) =T;(A) o(t,0)T; "(A) = (2n)3/? fd no; e ( : )

/

"at comoving distance \ if one keeps going in the / direction”

Abelian translation group in this case: we have a local map!

. — 1 . i_.._' - —*'l:—'.'_.
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A general equation of state

w=—(2v+3)/(6vr—3); a(r)x7/*"; H(r)a(t)=

The mode functions can be choosen as
or(r) = HO(kT),  Gi(r) = P HP (k)

Calculate (0/7;(0) |0) and expand at high momenta

k 2 — 1)2 = P —1)2
(0| T2(0) |0) x Zk: (a—) (4+ (Q(kr)z) + O(k7) 1) (1 _,_:;(4(%)2) )
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A massless scalar field in a flat FRW

Preserve local physics
o(t, T~ 0)+3Ho(t. T = 0) — V3o(t, T~ 0) =0

19 = H =  (at)? (1.7 ~ 0) + a(t) Vé2(t. % ~ 0))

Introduce global operators

| = 1 - 1 | 1 ik-T
O(t.F=0) = s Z [wk(t)A,; +yp(H) AT ;;:] eikE.
k
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A general equation of state

w=—2r+3)/(6vr—3); a(r)xt¥?*"; H(7)a(r)= - ;T‘Zu
The mode functions can be choosen as
k(1) = 7 HLY (k7), v (T) = 7 HS? (kT) 1
% i
2

Calculate (0/77(0) |0) and expand at high momenta /'

k 2v — 1)2 i 2v — 1)2
(0| T5 (0) |0) ; (E) (4+ (Q(kr)'z) + O(kT) ‘) (1 _?(4(k‘r)2) )

. e

— e =8
Z (I‘I"‘L"‘cr = a(T)? L'EEFE') [‘4I w_ Ere

k. k
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(sort of) Modified Dispersion Relations

"~ Manifold”- Fourier comoving labels.
They are conserved during evolution.
Fourier space is flat in these labels

=1
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Defining local field operators elsewhere

Exponentiate the momentum operator and make a translation operator

T:(X) = e 25 o / d*n k(i) AL Az
1 : —iAn, (1-H242
——— ' -3 —_— ';- ” 2n=

"at comoving distance \ if one keeps going in the / direction”

Abelian translation group in this case: we have a local map!

‘ta © 1 . ik-X [ —ik-X

irsa: 04050000 Page 63/89




Local Commutators 7(0) = a34(0)

0), o(N)] = —i | 6°(A

w(0).6(0] = =i (%) + -5 )

we Over d‘e / d'izk! [‘.TI'.”,D{;?” = —1 {1 A EHEHE,\E > 01‘ HZ\‘-—E;’J{}E
expected pattern Jrach- 1
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Defining local field operators elsewhere

Exponentiate the momentum operator and make a translation operator

T;() = e . P; = f d*n k(i) AL Az
1 : R Y -
— . == — d' " 2n
O(t-;)=1}(f\) o(t,0) T, H(A) = (QW):,,z/d A L=

"at comoving distance )\ if one keeps going in the / direction”

Abelian translation group in this case: we have a local map!

: — 1 : i_'._' o —*'!:_‘.'_.
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Local Commutators 7(0) = a®4(0)

5 o 1 Ha’
0), (X)) = —i [ 5°(A
m(0).0(0)] = =i (3% + -5 )
We recover the /‘ EX [(0), ()] = —i {1 + 1222 | ocgry2rsy
expected pattern AacH .
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Local Commutators 7(0) = a®6(0)

iz i o -
(0. 00] = —i (800 + 55— )

We recover the

/ &N [1(0).6(X)] = —i [1 + lﬂzuzhz +0(szzgs}z]
expected pattern NacH ! 1

What about time derivatives? If we derive after translating we get a

as

WD) = G [ @ [0 An + e a]
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Killing the spurious

[6(0), ®(X)] = —[x(0), &(X)] — 2i ( 2”;)3 / d®n e |y, | (K - Xy
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Killing the spurious

/ High momenta, small distances

. =1 [ H?a? - _(H?a®)
3 —ini-A — -
/dne ;I: ~n(1— an)-/\wu o3 ]
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Killing the spurious

/ High momenta, Sma“ distances

: e I H?a* - _(H?*a®)
3 —7i-A — —
/dne ;[ -n(l—- gnz)—/\*n 93 ]
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Killing the spurious

/ H|gh momenta, small distances

- e BS H?a? - _(H?%a®)
3 —17i-A — —
/dne ;[ -n(l—- gnz)——/\*n o2 ]
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Qutline

e Cosmology
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Light-like trajectories and Luminosity Distance

We get a correction from the modified global expansion

dr s= sy 3(H2a2)’
dr ' 4
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Light-like trajectories and Luminosity Distance

We get a correction from the modified global expansion

d H22r
—T=1+r3( a”)

dr 4




USEP v.s. LCDM

Kowalski et al. 2008
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iy

USEP v.s. LCDM

1.5
1.0
05

0.0
0.0 0.5 LD
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Kowalski et al. 2008
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dy

USEP v.s. LCDM

i

.0
s

00
0.0 05 1D
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Kowalski et al. 2008
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dp

USEP v.s. LCDM

30

20

L0

0.0
00 0.5 1.0
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Kowalski et al. 2008
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CONCLUSIONS

¢ |R-modification with no freedom left (does not go to GR in some limit).
e A genuinely new theoretical framework (exciting, but also worring...)
e Much more to understand and double-check

¢ Promising Cosmological Implications
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USEP v.s. LCDM

Kowalski et al. 2008
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iy

USEP v.s. LCDM

1.5
1.0
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dp

USEP v.s. LCDM

0.0
.0 0.5 1.0
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A massless scalar field in a flat FRW

Preserve local physics

o(t, E~0)+3Ho(t. T =0) — V3o(t, T~ 0) =0
1 2 2 =
TS:H:E(a(t) P2 (t, T =~ 0) + a(t) Vo2(t, T m()))

Introduce global operators

1 - o ...”I i
= — A4 e % T k-
ot Z ~0) = (2nL)? E_‘ [J,Lk(t)Ak + wk(t)A_E] " gy
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Ultra-Strong EP: more precisely...

(Tg)bare = /d3k (k | fquj:(t) | f‘“f:ft) | )

Pirsa: 04050000



Ultra-Strong EP: more precisely...

N P D

In the full, IR-completed theory these
terms just do not exist
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Ultra-Strong EP: more precisely...

(e = [ i (1 T St )

In the full, IR-completed theory these
terms just do not exist

e This can arguably be achieved with a IR modification of the standard paradigm

e CC problem under a new light

e The IR term that cancel the quadratic divergence has the right size to give
interesting cosmological implications.
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